Minna Varikmaa

Comprehensive analysis of
proteolysis in long-ripened hard
cooked Old Saare cheese
Minna Varikmaa, Tiina Kriščiunaite, Natalja Kabanova, Irina
Stulova, Viktoria Põžjanova, Raivo Vilu
Competence Centre of Food and Fermentation Technologies
Tallinn University of Technology
Outline
1. Backround
2. Experimental design
3. Results
 Distribution of proteolysis fractions
 Evolution of small peptides
 Release of free amino acids
Old Saare cheese
Milk
Coagulation time (min)
Cutting time (min)
Cooking/heating time (min) at 520C
Pre-press
Pressing (h)
Brining
Water content of cheese
pH of cheese
Ripening time at 120C (months)
Cow
37-43
11.5
40
21,4, 1 bar
8
72h, 18-19.5% salt in brine, 10⁰C
38,4
5,29
8
Starter cultures :
Lc. lactis subsp. lactis,
Lc. lactis subsp. cremoris
Lc. lactis subsp. diacetylactis
Ln. mesenteroides subsp. cremoris
St.thermophilus
Lb. Casei
Lb. Acidophilus
Lb. Helveticus
Microbial counts in Old Saare detected by
pyrosequencing of cDNA library
120
Relative microbial counts, %
100
80
St.thermophilus
60
Lb.casei
Lb.Helveticus
40
Lc.lactis
20
0
0
0.5
1
3
4
Age, months
Blank et al., 2014. Manuscript in preparation.
Objective
Aim of the study:
 Develop in silico tools to analyze casein proteolysis
 Obtain full casein proteolysis profile of Old Saare cheese
throughout 8 months of ripening
Samples:
 2 industrial trials of Old Saare
 10 time-points (months): 0 (after pressing, before salting),
0.5, 1, 2, 3, 4, 5, 6, 7, 8
Comprehensive description of casein hydrolysis
• Capillary electrophoresis (CE)
– caseins and big peptides
• LC-MS/MS
– water soluble peptides
• UPLC
– free amino acids
Fox et al., 2004
Experimental design
GRATED CHEESE
Citric dispersion (CD)
Kjeldahl
total protein in CD
CE
intact CN and
long peptides
Water soluble extract
(WSE)
Kjeldahl
total protein in
WSE
UPLC
LC-MS/MS
small peptides
4-25 AA long
FAA
Results
Distribution of casein proteolysis products
Content, g/ 100 g
30
25
Free amino acids
20
Small peptides
(striped)
15
Long peptides
(spotted)
10
5
α-s1-casein
Intact protein
(solid)
0
0
0.5
1
2
3
4
5
6
7
8
Ripening time, months
α-s1-casein
para-κ-casein
α-s2-casein
Unknown long peptides
β-casein
Free amino acids
Results
Accumulation of small peptides
Content, g/100 g
2.5
Number of identified peptides
α-s1-casein
1033
2.0
1.5
α-s2-casein
872
1.0
β-casein
1112
0.5
κ-casein
260
Total
3277
0.0
0
0.5
1
2
3
4
5
6
7
Ripening time, months
α-s1-casein
α-s2-casein
β-casein
κ-casein
8
Results
Allocation of small peptides on α-s1-casein
sequence
0 months:
8 months:
Results
Allocation of small peptides on α-s2-casein
sequence
0 months:
8 months:
Results
Allocation of small peptides on β-casein
sequence
0 months:
8 months:
Results
Allocation of small peptides on κ-casein
sequence
0 months:
8 months:
Results
Analysis of cleavage sites I
Chymosin
Plasmin, cathepsin
CEPs
CEPs
Plasmin
cathepsin
Plasmin
?
Chymosin
Results
Analysis of cleavage sites II
Plasmin
Plasmin
Chymosin, CEPs
CEPs, cathepsin
CEPs, cathepsin
Chymosin
Results
Release of free amino acids
AA distribution in caseins:
Ala
Val
Tyr
Ala
Arg
70
50
Trp
0
Asn
60
Val
Tyr
0,5
Asp
1
30
Thr
GABA
20
Gln
0
Pro
Glu
4
6
His
Met
7
Ile
Lys
μmol/g
20
Thr
Leu
Cys
10
Ser
Gly
Orn
Asp
Gln
0
3
5
Phe
Asn
30
2
10
Ser
Arg
40
Trp
40
50
8
Pro
Glu
Phe
Gly
Met
His
Lys
Ile
Leu
Summary
 Full proteolysis profile of Old Saare cheese during 8 months of ripening
was determined:
 High proteolysis extent and depth was observed (only 25% of intact left;
~21% of TN was FAA) with most pronounce changes taking place during
first 4 months of ripening
 β-casein was most extensively hydrolyzed (19,3% intact remained)
followed by α-s2-casein>α-s1-casein>κ-casein
 Extensive hydrolysis of β-casein suggest significant contribution of plasmin
and CEPs (eg Lb.Helveticus) to Old Saare ripening
 Parallel increase in free amino acid and small peptides and Lb.Casei counts
at 3-4 months, suggest important impact of this NSLAB in promotion of
proteolysis
 Number of in silico tools were developed to analyze the formation of
small peptides, that can be applied to improve the choice of starters
and control the process of ripening
 Further studies are needed to verify how particular starter type and
inoculation number impacts the progress of proteolysis
Thank you!
Results
Loss of intact caseins
α-s1-casein
α-s2-casein
100.0% 94.7%
91.2%
100.0%
76.2%
66.3% 69.3%
54.4%
50.4%
38.3% 36.0% 33.4%
35.1%
27.5%
0
0.5
1
2
3
4
5
6
7
8
28.7% 25.8% 21.1%
19.6% 18.5% 22.4%
0
0.5
1
2
β-casein
87.1% 87.5%
100.0%
63.2%
92.2%
42.6%
81.9% 77.3%
24.6% 27.0% 21.6% 19.7% 19.8%
1
2
3
4
5
6
7
8
para-κ-casein
100.0%
0.5
4
Ripening time, months
Ripening time, months
0
3
5
Ripening time, months
6
7
8
0
0.5
1
2
62.5%
58.4% 61.5% 54.9% 51.0%
47.4%
3
4
5
Ripening time, months
6
7
8
350
300
'1-23'
'1-24'
'7-13'
'7-14'
'7-23'
'7-24'
'7-30'
'8-14'
'8-16'
'8-22'
'8-23'
'8-24'
'10-22'
'10-23'
'10-24'
'10-30'
'10-34'
'14-22'
'14-23'
'15-22'
'15-23'
'16-23'
'17-22'
'17-23'
'24-30'
'24-34'
'24-36'
'24-39'
'24-42'
'25-30'
'25-34'
'25-36'
'33-40'
'34-40'
'80-90'
'80-97'
'80-98'
'80-99'
'80-102'
'80-103'
'83-98'
'83-99'
'83-102'
'83-103'
'83-105'
'85-93'
'85-98'
'85-102'
'88-102'
'105-114'
'109-114'
'178-199'
'180-199'
'181-199'
Content, nmol/g
Results
Proteolysis of α-s1-casein
400
0 months
3 months
8 months
250
200
150
100
50
0
Results
The progess of proteolysis
100%
TN: ~28 g/100 g
SN: 0.9 to 8.2 g/100 g
90%
80%
70%
60%
FAA
50%
Small peptides
40%
30%
Long peptides
20%
Intact
10%
0%
0
0.5
1
2
3
4
5
6
7
8
Ripening time, months
Time,
months
0
0,5
1
2
3
4
5
6
7
8
Intact
Long peptides
21,88 (±0,69)
19,55 (±0,97)
19,03 (±0,68)
15,17 (±0,89)
10,59 (±0,36)
7,66(±0,26)
7,42(±0,33)
6,57(±0,43)
5,78(±0,29)
6,94(±0,47)
5,40 (±0,13)
7,24(±0,35)
6,91(±0,2)
9,32(±0,22)
11,82(±0,37)
13,07(±0,31)
13,39(±0,33)
13,34(±0,39)
13,88(±0,34)
13,03(±0,41)
Concentrations, g/100 g
Small peptides
0,74(±0,01)
1,05(±0,02)
1,37(±0,05)
1,61(±0,06)
2,34(±0,13)
2,28(±0,17)
1,75(±0,12)
1,98(±0,16)
1,84(±0,22)
2,19(±0,16)
FAA
0,12(±0,00)
0,31(±0,01)
0,84(±0,03)
2,05(±0,04)
3,40(±0,07)
5,14(±0,12)
5,59(±0,05)
6,26(±0,08)
6,65(±0,14)
5,99(±0,05)