MATH. 2924, HOMEWORK 6, SOLUTIONS DUE FRIDAY 9.26.2014 TOMASZ PRZEBINDA 1. Which of the following rational functions are simple fractions 2 2 2x 2 , (b) , (c) , (a) , (d) 2 2 x−2 x−2 (x − 2) x − 3x + 2 (e) (x2 2x + 2 . − x + 2)3 (b), (c), (e). 2. Decompose into partial fractions over R: 2x2 + 2x + 13 . x5 − 2x4 + 2x3 − 4x2 + x − 2 1 x+2 3x + 4 − 2 − 2 . x − 2 x + 1 (x + 1)2 3. Compute the integral Z ln(x2 − x + 2) dx. We do it in stages. First integration by parts gives Z Z 2x − 1 2 2 ln(x − x + 2) dx = xln(x − x + 2) − x 2 dx. x −x+2 Next, by long division 2x − 1 2x2 − x x−4 = =2+ 2 . 2 2 x −x+2 x −x+2 x −x+2 Here the last fraction is simple and 1 7 x2 − x + 2 = (x − )2 + . 2 4 Therefore we transform this simple fraction as follows x (x − 12 ) − 72 x − 12 x−4 = = x2 − x + 2 (x − 12 )2 + 47 (x − 12 )2 + 1 7 4 − (x − (1) (2) 7 2 1 2 ) 2 + 7 4 2 TOMASZ PRZEBINDA Furthermore Z and Z (x − 7 2 1 2 ) 2 + x − 12 (x − 12 )2 + 7 4 7 dx = 2 r 7 4 7 1 dx = ln((x − )2 + ) 2 4 √ x− 1 4 2x − 1 tan−1 ( q 2 ) = 7 tan−1 ( √ ) 7 7 7 4 Hence the integral of (2) is equal to √ 7 2x − 1 1 2x + ln((x − )2 + ) − 7 tan−1 ( √ ). 2 4 7 Therefore (1) is equal to √ 1 7 2x − 1 xln(x2 − x + 2) − 2x − ln((x − )2 + ) + 7 tan−1 ( √ ). 2 4 7 4. Compute the integral Z x tan−1 (x) dx Again integration by parts show that Z Z 1 2 1 2 1 −1 −1 x tan (x) dx = x tan (x) − x dx 2 2 x2 + 1 Furthermore 1 x2 x2 + 1 − 1 1 x2 2 = 2 = =1− 2 . 2 x +1 x +1 x +1 x +1 Thus Z Z 1 2 1 1 1 1 x 1 x 2 dx = ( − ) dx = − tan−1 (x). 2 2 x +1 2 2x +1 2 2 Finally Z x 1 1 x tan−1 (x) dx = x2 tan−1 (x) − + tan−1 (x). 2 2 2 6. Compute the integral Z 4x2 + 4x − 11 dx. (2x − 1)(2x + 3)(2x − 5) Here is the partial fraction decomposition of the function under the integral 4x2 + 4x − 11 1 1 1 1 3 1 = . 1 − 3 + (2x − 1)(2x + 3)(2x − 5) 4x− 2 8x+ 2 8 x − 25 MATH. 2924, HOMEWORK 6, SOLUTIONS DUE FRIDAY 9.26.2014 Hence Z 3 4x2 + 4x − 11 1 1 1 3 3 5 dx = ln(|x − |) − ln(|x + |) + ln(|x − |) + C. (2x − 1)(2x + 3)(2x − 5) 4 2 8 2 8 2 7. Compute the integral Z 1 dx. x4 + 1 Notice that x4 + 1 = (x4 + 2x2 + 1) − 2x2 = (x2 + 1)2 − 2x2 = (x2 − √ 2x + 1)(x2 + Hence we get the partial fraction decomposition √ √ x+ 2 x− 2 1 1 1 √ √ = √ − √ x4 + 1 2 2 x2 + 2x + 1 2 2 x2 − 2x + 1 Therefore the integral we are computing is equal to √ √ 1 x2 + 2x + 1 1 2x √ ln( √ ) + √ tan−1 ( ) + C. 2 1 − x2 4 2 x − 2x + 1 2 2 √ 2x + 1).
© Copyright 2025 ExpyDoc