Journal of mathematics and computer science 12 (2014), 85-98 Fixed Point Results in Partial Metric Spaces Using Generalized Weak Contractive Conditions M. Akram*, W. Shamaila † * † Department of Mathematics GC University, Lahore, Pakistan. [email protected] Department of Mathematics, Kinnaird College for Women, Lahore, Pakistan. [email protected] Article history: Received July 2014 Accepted September 2014 Available online October 2014 Abstract In this work, fixed point results using generalized weakly contractive conditions on partial metric spaces are presented. These results generalize many previously obtained results. Some examples are also given to show the usability of these results. Keywords: Partial Metric, Generalized Weak contractive condition, Fixed point. 1. Introduction The concept of partial metric spaces was given by Steve Matthews [1, 2] in 1992 to study the denotational semantics of data flow network. He presented partial metric space as a generalization of metric space in the sense that the self distance of any point need not be zero. Recently many authors have focused on the fixed point results in partial metric spaces (see e.g.[3-9]). The notion of -contraction was introduced by Boyd and Wong [10] and the weak -contraction was introduced by Alber and Guerre-Delabriere [11] as a generalization of -contraction. Later on contractions and weak -contractions have been studied by many authors (see e.g. [5-9, 12, 14]) in metric spaces as well as in partial metric spaces. Consistent with Matthews [1, 2], Karapinar [3] and Altun and Erduron [4] some important definitions and results which are used in this paper are given in the following. M. Akram, W. Shamaila / J. Math. Computer Sci. 12 (2014), 85-98 Definition 1.1 [1, 2] A partial metric " p" on X is a function from X X to R such that for every element x, y and z of X it satisfies following axioms. p1 : 0 px, x px, y . p2 : px, x = px, y = p( y, y) if and only if x = y. p3 : px, y = p y, x . (symmetry) p4 : p( x, z) px, y p y, z p y, y . (triangular inequality) If " p" is a partial metric on X then X , p is called a partial metric space (PMS). For a partial metric p X, on the function d p : X X R defined by d p x, y = 2 px, y px, x p y, y for all x, y, z X is a metric on X . Each partial metric " p" on X generates a T0 topology p on X for which the collection Bp x, : x X , > 0 of all open balls forms a base. Where Bp x, = y X : px, y < px, x for each > 0 and x X . Definition 1.2 [1, 2, 4] 1. A sequence yn in a partial metric space X , p converges to the limit y X if and only if lim p y, yn = p y, y . n 2. A sequence yn in a partial metric space X , p is called Cauchy if and only if lim p ym , yn exists and is finite. m , n 3. A partial metric space X , p is said to be complete if every Cauchy sequence yn in X converges, with respect to p , to a point y X such that lim p ym , yn = p y, y . m , n 4. The mapping f : X X is said to be continuous at y0 X , if for every > 0, there exists > 0 such that f Bp y0 , Bp f y0 , . The following lemma will be frequently used in the proofs of the main results. Lemma 1.3 [1, 4] A sequence yn is a Cauchy sequence in a partial metric space X , p if and only if it is a Cauchy sequence in the metric space X , d p . I. A partial metric space X , p is complete if and only if the metric space X , d p is complete. Moreover, lim d p y, yn = 0, if and only if n px, x = lim p y, yn = lim p yn , ym . Where y is the limit of yn in X , d p . n n , m 86 M. Akram, W. Shamaila / J. Math. Computer Sci. 12 (2014), 85-98 II. Let X be a complete partial metric space. Then (a) If px, y = 0, then x = y. (b) If x y, then px, y > 0. Let X be a partial metric space. Assume that the sequence yn is converging to z as III. n . such that pz, z = 0. Then lim p yn , y = pz, y for all elements y of X . n 2. Main results In the following theorem a generalized form of weak -contraction is used. Theorem 2.1 Let X , p be a complete partial metric space and T : X X be a self map such that for all x, y X p(Tx, Ty) M ( x, y) (M ( x, y)) (1) where 1 1 M ( x, y ) = max px, y , px, Tx p y, Ty , px, Ty p y, Tx 2 2 and : 0, 0, is continuous non-decreasing function with t = 0 if and only if t = 0. Then T has a unique fixed point. Proof: Let y0 X be fixed. Define a sequence yn in X by yn1 = Tyn , for all n 0. If there exist a positive integer n0 such that p yn 0 1 , yn = 0 or p Tyn , yn = 0, then Tyn = yn , this shows that yn 0 0 0 0 0 0 is the fixed point of T . Hence we assume that pTyn , yn = p yn1 , yn 0, for all n 0 . By substituting x = yn and y = yn 1 in (1) , we have pTyn , Tyn1 = p yn1 , yn2 M yn , yn1 M yn , yn1 where 1 p yn , yn 1 , 2 p yn , yn 1 p yn 1 , yn 2 , M ( yn , yn 1 ) = max . 1 p yn , yn 2 p yn 1 , yn 1 2 By p4 , p yn , yn2 p yn1 , yn1 p yn , yn1 p yn1 , yn2 If p yn , yn 1 < 1 p yn , yn1 p yn1 , yn2 , then 2 87 (2) M. Akram, W. Shamaila / J. Math. Computer Sci. 12 (2014), 85-98 M yn , yn1 = 1 p yn , yn1 p yn1 , yn2 2 From (2) we have p yn1 , yn 2 1 p yn , yn1 p yn1 , yn2 1 p y n , y n1 p y n1 , y n2 2 2 < (3) 1 p yn , yn1 p yn1 , yn2 2 Which implies p yn1 , yn2 p yn , yn1 (4) If 1 p yn , yn1 p yn1 , yn2 < p yn , yn1 , 2 then M yn , yn1 = p yn , yn1 and again from (2) , we have p yn1 , yn2 p yn , yn1 p yn , yn1 (5) < p yn , yn1 Hence p yn1 , yn2 p yn , yn1 (6) Thus in both cases we have p yn1 , yn 2 p yn , yn1 for all n. Hence p yn , yn1 is monotone decreasing sequence of non-negative real numbers so there exists a real number r 0 , such that lim p yn , yn1 = r. n (7) Letting n , in (3) or in (5) , using (7) and regarding the continuity of we have r r r , which forces r = 0. Hence, in both cases lim p yn , yn1 = 0. n Now consider, 88 (8) M. Akram, W. Shamaila / J. Math. Computer Sci. 12 (2014), 85-98 pTym1 , Tym1 = p ym , ym M ( ym1 , ym1 ) M ( ym1 , ym1 ) 1 = max p ym1 , ym1 , p ym1 , ym p ym1 , ym 2 1 max p y m1 , y m1 , p y m1 , y m p y m1 , y m 2 = maxp y m1 , y m1 , p y m1 , y m maxp y m1 , y m1 , p y m1 , y m = p ym1 , ym p ym1 , ym by p1 Hence, p y m , y m p y m1 , y m p y m1 , y m . Also by P1 0 p y m , y m p y m1 , y m p y m1 , y m . Let m , using (8) and continuity of we have lim p ym , ym = 0. (9) m Now, in order to show that yn is a Cauchy sequence in the complete metric space, X , d p . Assume that yn is not Cauchy. Then there exists some > 0 for which we can find the subsequences ymk and yn k of yn with n(k ) > m(k ) > k such that d p ymk , xnk . (10) Further, we can choose nk corresponding to mk , in such a way that it is the smallest integer satisfying (10) hence d p ymk , ynk 1 < . (11) From (10) d p ymk , ynk d p ymk , ynk 1 d p ynk 1 , ynk < d p ynk 1 , ynk . Hence, d p ymk , ynk < d p ynk 1 , ynk . 89 (12) M. Akram, W. Shamaila / J. Math. Computer Sci. 12 (2014), 85-98 We know that, d p ynk 1 , ynk = 2 pynk 1 , ynk pynk , ynk py nk 1 , y nk 1 . Let k , using (8) and (9), we get lim d p yn k 1 , ynk = 0. (13) lim d p ymk , ynk = . (14) k Using (13) in (12), we have k We, also know that d p ymk , ynk = 2 pymk , ynk pymk , ymk pynk , ynk Let k , using (9) and (14) we get lim d p ymk , ynk = 2 lim pymk , ynk . k k Therefore, we get lim p ymk , yn k = k 2 . (15) From the triangular inequality d p ynk , ymk d p ynk , ynk 1 d p ynk 1 , ymk 1 d p ymk 1 , ymk and d p ynk 1 , ymk 1 d p ynk 1 , ynk d p ynk , ymk d p ymk , ymk 1 . Let k , and using (13) and (14) we get lim d p ynk , ymk lim d p ynk 1 , ymk 1 k k and lim d p ynk 1 , ymk 1 lim d p ynk , ymk k k Hence, lim d p ynk 1 , ymk 1 = lim d p ynk , ymk = . k k 90 (16) M. Akram, W. Shamaila / J. Math. Computer Sci. 12 (2014), 85-98 By definition of d p , d p ymk 1 , ynk 1 = 2 pymk 1 , ynk 1 pymk 1 , ymk 1 py nk 1 , y nk 1 . Let k , and using (9) we get lim d p ymk 1 , ynk 1 = 2lim pymk 1 , ynk 1 = . k k Which gives lim p ymk 1 , yn k 1 = k 2 . (17) Now, consider d p ymk , ynk d p ymk , ynk 1 d p ynk 1 , ynk and d p ymk , ynk 1 d p ymk , ynk d p ynk , ynk 1 . Let k , in the above inequalities and using (13) and (14) we get lim d p y mk , y nk 1 k lim d p y mk , y nk 1 . and k Therefore, lim d p ymk , ynk 1 = . (18) lim d p ynk , ymk 1 = . (19) k Similarly, we can show that k Again by using the definition of d p , we have d p ymk , ynk 1 = 2 pymk , ynk 1 pymk , ymk pynk 1 , ynk 1 Letting k , and using (9) and (18) we get lim d p ymk , ynk 1 = 2 lim p ymk , yn k 1 , k k which gives 91 M. Akram, W. Shamaila / J. Math. Computer Sci. 12 (2014), 85-98 lim p ymk , yn k 1 = k 2 lim p yn k , ymk 1 = . (20) . (21) Similarly, we can show that k 2 Now by substituting x = ymk and y = yn k in (1) we have 1 p ym k , yn k , 2 p ym k , ym k 1 p yn k , yn k 1 , p(Tymk , Tynk ) = p( ymk 1 , ynk 1 ) max 1 p ym k , yn k 1 p yn k , ym k 1 2 1 p y , y , p y , y p y , y , m k n k m k m k 1 n k n k 1 2 max 1 p y m k , y n k 1 p y n k , y m k 1 2 Letting k , and using (8) , (15) , (17) , (20) , (21) and using the continuity of we get max ,0, max ,0, , 2 2 2 2 2 hence 2 . 2 2 A contradiction. Thus yn is a Cauchy sequence in X , d p . Which gives lim d p yn , ym = 0. m , n (22) Since X , d p is complete so there exists z X such that lim d p yn , z = 0, if and only if n pz, z = lim p yn , z = lim p yn , ym = n m , n 1 lim d p yn , ym = 0. 2 m,n (by Lemma 1.3(II) and (22)). This gives, pz, z = lim p yn , z = lim p yn , ym = 0. n m , n Now, applying (1) with x = yn and y = z , we have p(Tyn , Tz) = p( yn1 , Tz) 92 (23) M. Akram, W. Shamaila / J. Math. Computer Sci. 12 (2014), 85-98 1 1 max p yn , z , p yn , yn 1 pz, Tz , p yn , Tz pz, yn 1 2 2 1 1 max p yn , z , p yn , yn 1 pz , Tz , p yn , Tz pz, yn 1 2 2 Letting k , using (8) , (23) , Lemma 1.3 (IV) and the continuity of we get pz, Tz 1 1 1 pz, Tz pz, Tz < pz, Tz . 2 2 2 Which is possible only if pz,Tz = 0 and hence Tz = z. To show the uniqueness of z consider z * as another fixed point of T then by (1), 1 1 p( z, z * ) max p z, z * , pz, z p z * , z * max p z, z * , pz, z p z * , z * . 2 2 (24) By using P1 we have pz, z p z, z * and p z * , z * p z, z * . Adding above two inequalities, we get p z , z p z * , z * 2 p z , z * . . (25) Using (25) in (24), we have p z, z * p z, z * p z, z * . Further by using the property of we deduce that p z, z * = 0 and hence, z = z * . Thus z is the unique fixed point of T . Example 2.2 Suppose X = R and px, y = maxx, y; Then X , p is a complete partial metric x2 space. Let T : X X be defined by Tx = for all x X and : 0, 0, is such that 1 x t t = . Assume that x y. Then from the contractive condition of Theorem 3.1, we have 1 t 1 x2 y 2 1 y2 p y, , p x, pTx, Ty max px, y , p x, 2 1 x 1 y 2 1 y x 2 p y, 1 x 1 x2 y 2 1 y2 x 2 p y, , p x, p y, max px, y , p x, 2 1 x 1 y 2 1 y 1 x 93 M. Akram, W. Shamaila / J. Math. Computer Sci. 12 (2014), 85-98 x2 x2 y2 x x2 x x = x = p , = . All the conditions of Theorem 3.1 are true, 1 x 1 x 1 x 1 x 1 y thus T has a unique fixed point namely, 0. As In the following theorem we shall obtain a fixed point theorem on partial metric space for a generalized weak contractive type mapping. Theorem 2.3 Let X , p be a complete partial metric space and T : X X be a self-mapping such that for all x, y X , pTx, Ty max px, y , 1 px, Tx p y, Ty , 1 px, Ty p y, Tx 2 2 maxpx, y , px, Tx , (26) where : 0, 0, is a continuous function with t = 0 if and only if t = 0, : 0, 0, is monotone non-decreasing and continuous function with t = 0 if and only if t = 0 . Then T has a unique fixed point. Proof: Let y0 X be fixed. Define a sequence of iterates yn in X , by yn1 = Tyn for all n 0. If for some positive integer m, p ym1 , ym = 0, then by p1 and p2 , ym is the fixed point of T . Hence, assume that p yn1 , yn 0 for all n 0. Put x = yn , y = yn 1 in (26) we have 1 p yn , yn 1 , 2 p yn , yn 1 p yn 1 , yn 2 , p yn 1 , yn 2 max 1 p yn , yn 2 p yn 1 , yn 1 2 maxp y n , y n1 , p y n , y n1 . (27) From p4 , we have p yn , yn 2 p yn1 , yn1 p yn , yn1 p yn1 , yn2 . , therefore (27) becomes p yn1 , yn 2 max p yn , yn1 , 1 p yn , yn1 p yn1 , yn2 p yn , yn1 2 94 (28) M. Akram, W. Shamaila / J. Math. Computer Sci. 12 (2014), 85-98 If p yn , yn 1 1 p yn , yn1 p yn1 , yn2 . Then (28) becomes 2 1 p yn , yn1 p yn1 , yn2 p yn , yn1 2 p yn1 , yn 2 1 < p y n , y n1 p y n1 , y n 2 2 Since is monotone increasing so p yn 1 , yn 2 because p y n , y n1 > 0 1 p yn , yn1 p yn1 , yn2 , which gives 2 p yn1 , yn2 p yn , yn1 If (29) 1 p yn , yn1 p yn1 , yn2 p yn , yn1 2 then (28) becomes p yn1 , yn 2 p yn , yn1 p yn , yn1 < p yn , yn1 p yn , yn1 > 0 Hence, we get p yn1 , yn2 p yn , yn1 (30) Since is monotone non-decreasing, so in both cases p yn , yn1 is monotone decreasing sequence of non-negative real numbers. Hence, there exists a real number r 0 such that lim p yn , yn1 = r. n If max p yn , yn 1 , (31) 1 p yn , yn1 p yn1 , yn2 = p yn , yn1 . 2 Then from (28) we have p yn1 , yn2 p yn , yn1 p yn , yn1 . Taking limit as n , using (31) and the continuity of and we get, r r r , which is a contradiction unless r = 0. If 95 (32) M. Akram, W. Shamaila / J. Math. Computer Sci. 12 (2014), 85-98 1 1 max p yn , yn1 , p yn , yn1 p yn 1 , yn 2 = p yn , yn 1 p yn 1 , yn 2 , 2 2 then from (28) we have 1 p yn , yn1 p yn1 , yn2 p yn , yn1 . 2 p yn1 , yn 2 (33) Taking the limit as n , using (31) and the continuity of and we get r r r , which is a contradiction unless r = 0. Thus lim p yn , yn1 = 0. (34) n Also from p1 , we get lim p yn , yn = 0. (35) n Next, we prove that yn is a Cauchy sequence in the complete metric space X , d p . Following the steps (10 21) in the proof of Theorem 3.1 and applying (26) with x = yn k and y = ymk we obtain pynk 1 , ymk 1 1 p yn k , ym k , 2 p yn k , yn k 1 p ym k , ym k 1 , max 1 p yn k , ym k 1 p ym k , yn k 1 2 max pynk , ymk , pynk , ynk 1 . 2 2 (36) 2 Taking limit as k , in (36) we have , which is impossible since > 0. Hence, yn is a Cauchy sequence in the complete metric space X , d p . So there exists 2 some z X such that lim d p yn , z = 0 if and only if n pz, z = lim p yn , z = lim p yn , ym = n m , n Hence pz, z = lim p yn , z = lim p yn , ym = 0. n m, n (37) 96 1 lim d p yn , ym = 0. 2 m,n M. Akram, W. Shamaila / J. Math. Computer Sci. 12 (2014), 85-98 To show that z is the fixed point of T put x = yn and y = z in (26). p yn1 , Tz max p yn , z , 1 p yn , yn1 pz, Tz , 1 p yn , Tz pz, yn1 2 2 maxp yn , z , p yn , yn1 . (38) 1 pz, Tz . Which forces pz,Tz = 0 and hence 2 Letting n , in (38) we have pz, Tz Tz = z. Thus z is the fixed point of T . In order to prove the uniqueness of z consider z * as another fixed point of T then for taking x = z and y = z * in (26) we have pTz, Tz* = pz, z * max pz, z * , 1 1 pz, z p z * , z * , p z, z * p z * , z 2 2 max p z, z * , pz, z . Thus p z, z * p z, z * p z, z * . Which is possible only if p z, z * = 0. By using p1 and p2 we get z = z *. Thus T has a unique fixed point. Now, we consider an example to support the usability of Theorem 2.3. Example 2.4 In Example 2.2 if we define : 0, 0, by t = t , for all t 0, . Then the contractive condition of Theorem 2.3 is satisfied and we have 0 as the unique fixed point of T . Corollary 2.5 Let X be a complete partial metric space. Let T : X X be a self-mapping such that all elements x, y of X , satisfy 1 p x , y , p x, T m x p y , T m y m m 2 p T x, T y max 1 p x, T m y p y , T m x 2 max px, y , p x, T m x , , (39) where m is a positive integer and , are as defined in Theorem 2.3. Then T has a unique fixed point in X . Proof: Put S = T m in (39) we have, 97 M. Akram, W. Shamaila / J. Math. Computer Sci. 12 (2014), 85-98 1 px, Sx p y, Sy , 1 px, Sy p y, Sx 2 2 max px, y , px, Sx pSx, Sy max px, y , Hence by Theorem 2.3, S has a unique fixed point z that is, Sz = z since S = T m so T m z = z which gives T T m z = T m1 z = T m Tz = S Tz = Tz, which shows that Tz is also a fixed point of S . Since S has a unique fixed point so Tz = z. Hence, z is the fixed point of T . Condition (39) implies the uniqueness of z. Conclusion: We have generalized the theorem proved by Rhoades[13] for a self map on a complete partial metric space and we obtain Matthews’ generalization of Banach’s contraction principle as a special case of the Theorem 3.1. Moreover, a fixed point theorem for a self map defined for partial metric space satisfying a generalized , -weak contractive conditions is also proved. References [1] S. G. Matthews, Partial metric spaces. Research Report 212. Department of Computer Science, University of Warwick, 1992. [2] S. G. Matthews, Partial metric topology, General topology and its appl. Ann New York Acad of Sci.728 (1994) 183-197. [3] E. Karapinar, Generalizations of Caristi Kirk’s theorems on partial metric spaces, Fixed Point Theory and Application (2011); doi:10.1186/1687-1812-2011-4. [4] I. Altun and A. Erduran, Fixed point theorem for monotone mappings on partial metric spaces, Fixed point theory appl. Vol.2011, Dec 24 (2010) Article ID 508730, 10 pages. [5] T. Abdeljawed, Fixed points for generalized weakly contractive mappings in partial metric spaces, Mathematical and Computer modelling. 54 (2011) 2923-2927. [6] E. Karapinar and U. Yuskel, Some common fixed point theorems in partial metric spaces. J. of Appl. Mathematics. Vol 2011 (2011), Article ID 263621,16 pages. [7] T. Abdeljawed, E. Karapiner and K. Tas, A generalized contraction principle with control function on partial metric spaces, Computers and Mathematics with Appl. 63 (2012) 716-719. [8] T. Abdeljawed, E. Karapiner and K. Tas, Existence and uniqueness of a common fixed point on partial metric spaces, Appl Math Lett. 24 (2011) 1900-1904. [9] B. S. Choudhury and A. Kundu, Weak contractions in partial metric spaces, Department of Mathematics Bengal engineering and Sci Uni Shibpur, P.O-B garden Howrah-711103. India. [10] D. W. Boyd and T. S. W. Wong, On nonlinear contractions, Proc Amer Math Soc. 69; 20; 458-464. [11] Y. I. Alber and S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces, in: New results in operator theory,in: I.GoldbergYu.Lyubich(Eds), Advances and Appl. 98, Birkhäuser, Basel, (1997) 7-22. [12] Q. Zhang and Y. Song, Fixed point theory for generalized-weak contractions. Appl Math Lett. 2008, 22 (2009) 75-78. [13] B. E. Rhoades, Some theorems on weakly contractive maps. Nonlinear Anal. 47 (2001) 2683-2693. [14] M. Jain, N. Gupta and S. Kumar, Coupled fixed point results for mappings involving (\alpha, \psi)-weak contractions in ordered metric spaces and applications, The Journal of Mathematics and Computer Science, 10 (2012), 23-46. 98
© Copyright 2024 ExpyDoc