Session: LED Phosphors
Luminescent Materials for LEDs with
Ultimate Efficiency
y and Color Q
Quality
y
By
Prof. Dr. Thomas Jüstel
Department Head Chemical Engineering
Münster University of Applied Sciences
Almost 20% of produced electrical energy is consumed by lighting
((source: NASA))
in
1989
“The wind of change”
21st
Development of daylight white LEDs with
century luminous efficiency > 120 lm/W  replacement of
Na and Hg low and high pressure discharge lamps
2014
“The light of change”
East Berlin
 Na lamps
West Berlin
 Hg lamps
Outline
1. Advances in LED Technology
2. White Light Generation
3. Luminescent Materials (Phosphors)
4. Phosphor Converted LEDs (pcLEDs)
5. Towards Ultimate Efficiency and CRI
6. Conclusions and Outlook
1. Advances in LED Technology
1970
2014
(Ga,As)P
< 0.1
01W
< 1.0 lm
< 10 lm/W
< 120 °C
C
< 100 W/cm2
> 120 K/W
Yellow red,
Yellow,
red NIR
(Al,In,Ga)P, (In,Ga)N, (Al,Ga)N
06-5W
0.6
> 100 lm
up to 303 lm/W (CREE)
120 – 200 °C
C
100 – 200 W/cm2
2 – 12 K/W
All colours and UV!
(Al,In,Ga)P
 580 nm – 700 nm
 Yellow  Orange  Red
( , )
(In,Ga)N
 370 – 530 nm
 UV-A  Blue  Green
(Al,Ga)N
 210 – 370 nm
 UV-C  UV-A
Emission intens
sity [a.u.]
1. Advances in LED Technology
0,35
0,30
0,25
0,20
0,15
,
0,10
0,05
0,00
400
450
500
550
600
650
700
750
Wavelength [nm]
•
•
•
All spectral colours by LEDs without colour filter accessible!
EL of semiconductors results in emission bands with small FWHM < 30 nm
But white light cannot be efficiently produced by a single LED type so far....
far
1. Advances in LED Technology
Technical Status 2014
Lumen output:
CRI:
Liftime:
Design:
> 200 lm/W (cool white)
> 100 lm/W (warm white)
70 – 95
> 30000 h
Very flexible
Presently: Retrofits für fluorescent tubes and light bulbs
Advantages of LED over Incandescent lamps
Higher
g
lifetime
Higher effiziency
Better robustness
No IR radiation
Fluorescent lamps (CFL +TL)
Simpler
p driving
g and dimming
g
Higher colour rendering
Better robustness
No UV radiation
2. White Light Generation
General concepts
1. Gl
1
Glowing
i solids
lid
2. Gas discharges
3. Semiconductors
 visible
i ibl light
li h + IR
 VUV + UV-C/B/A + visible light
 UV-A or visible light
g or IR-A
White
Green
colour
filter
Coloured light
by absorption
Red
Blue
Y or YR or RG
phosphor
White light by
additive colour mixing
(V)UV
CO or RGB
phosphor
blend
White light by
luminescence
2. White Light Generation
Red + Green + Blue
LEDs
Blue LED + yellow
phosphor
Blue LED + RG
phosphor blend
UV LED + RGB
phosphor blend
2. White Light Generation
99.5
99
98
Multichip LEDs
•
•
•
Narrow band emitter
– ½ = 30 nm typical
95
90
– 2 - 5 monochromatic LEDs
80
Theoretical limit
70
– 430 lm/W with
60
Source: Zukauskas, A., et. al..,
50 "Optimization
of white polychromatic
– CCT = 4870 K
40
semiconductor lamps", Applied
y
Letters 80 ((2002)) 234-6
Physics
30
– CRI = 3 (!)
20
Possible values
10
– 360 lm/W for CRI 90, n = 3 - 4
5
– 320 lm/W
l /W for
f CRI 99
99, n = 5
0
Problems
300
350
400
Lumen output [lm/Welectric]
– Thermal q
quenching
g of (Al,In,Ga)P
(
)
– LED Efficiency
• Red / Blue
high
• Green
low “The
The green gap
gap”
Colour rend
C
dering
•
5 LED
4 LED
3 LED
2 LED
450
2. White Light Generation
440 - 490 nm
LED Chip
440 - 490 nm
Luminescent
Screen
LED Chip
440 - 490nm
Luminescent
Screen
300 – 350 lm/Wopt.
250 – 300 lm/Wopt.
280 – 330 lm/Wopt.
CRI = 70 – 85
CRI = 85 – 95
CRI = 80 – 85
low CRI at low Tc
high CRI at low Tc
but decreases with Tc
CRI ~ independent of Tc
single phosphor screen
phosphor blend
phosphor blend
2. White Light Generation
Blue band emitter + green + red converter
90
100
88
98
86
96
84
CR
RI
Luminous e
L
efficacy [lm
m/W]
102
82
94
80
92
78
90
440
450
460
470
480
490
Wavelength [nm]
Conclusion: Blue LEDs emitting in the range 460 – 470 nm
yield best compromise between CRI and luminous efficacy
2. White Light Generation
Emission of lines or narrow bands in the
blue and or red desired….
InGaN LED / Eu2+ Eu2+/ Eu3+/Mn4+
Lumen output of a light source
Strongly dependent on emission spectrum
•
Optimal for pure 555 nm radiation
– V() = 683 lm/W ( = 100%)
•
Luminous
L
i
flux
fl
– 1000 lm for 555 nm
requires solely 1.5 W radiation
– „green light“
li ht“
•
Blue and red radiation
– V() < 70 lm/W (<10%)
– reduces lumen equivalent
– is required for generating white light with high CRI
Lumen output [ lm/W ]
•
 [ nm ]
3. Luminescent Materials (Phosphors)
Definition
An (inorganic) luminescent material (phosphor) is a material which
converts
t absorbed
b
b d energy into
i t electromagnetic
l t
ti radiation
di ti beyond
b
d
thermal equilibrium
Emission
Excitation
Heat
Heat
Heat
D
A
S
Layer of Y3Al5O12:Ce
µ-particles
ET
ET
A
Emission
Heat
ET
ET
A
Heat
Average particle
size ~ 1 – 10 µm
3. Luminescent Materials (Phosphors)
Type of converter materials
Norm
malised emission
n intensity
1. Inorganic phosphors
Microscale powders
SrYSi4N7:Ce
(Ba,Sr)2SiO4:Eu
(Ca,Sr,Ba)Si2N2O2:Eu
SrYSi4N7:Eu
(Y,Gd,Tb,Lu)AG:Ce
CaAlSiN3:Ce
(Ca,Sr)2SiO4:Eu
(Ca,Sr)S:Eu
(Ca,Sr,Ba)2Si5N8:Eu
1,0
(Ca,Sr)AlSiN3:Eu
Nanoscale powders
0,8
((Y,Gd,Tb,Lu)AG:Ce
, , , )
Quantum dots
0,6
(Zn,Cd)(S,Se), (In,Ga)(P,As),
2. Organic dyes
0,4
Polycyclic aromatic compounds
Perylenes
0,2
Coumarines
Metal complexes
0,0
Ln3+-complexes Ln = Tm, Tb, Eu 300
R and
Rud Ir-complexes
I
l
400
500
600
Wavelength [nm]
700
800
3. Luminescent Materials (Phosphors)
Garnets
• (Y,Tb)3Al5O12:Ce
• Lu3Al5O12:Ce
• Lu3(Ga,Al)5O12:Ce
• (Lu,Y)3Sc2Al3O12:Ce
• ((Y,Lu)
, u)3((Al,Mg,Si)
, g,S )5O12:Ce
Ce
• Ca(Y,Lu)2Al4SiO12:Ce
Ortho-silicates
• (Ca,Sr,Ba)2SiO4:Eu
• (Ca,Sr,Ba)3SiO5:Eu
(Oxy)Nitrides
• (Sr,Ca,Ba)
(Sr Ca Ba)2Si5N8:Eu
• (Sr,Ca,Ba)Si2N2O2:Eu
• (Ca,Sr)AlSiN3:Eu
• (Ca,Sr,Ba)SiN
(Ca Sr Ba)SiN2:Eu
• La3Si6N11:Ce
• Ba3Si6O12N2:Eu
• ,ß-SiAlONes:Eu
 ß SiAlONes:Eu
Selection criteria for LED phosphors
• Patent situation
• Price and access
• (Photo)Chemical stability
• Colour point stability
• Conversion efficiency (IQA and EQA)
• Thermische quenching
• Absorption strength
• Saturation/Linearity
• Environmental issues
„2-5-8
2-5-8“
„1-2-2-2“
„1-1-1-3“
„1-1-2
1-1-2“
„3-6-11“
4. Phosphor Converted LEDs
High Power LEDs  low thermal resistance ~ 2-3 K/W typical
phosphor
contact
plastic
lens
InGaNsemi-
gold wire
conductor
cooling element
(Cu)
(In,Ga)N semiconductor + phosphor (converter)
Bl 420 – 480 nm
Blue
Y ll
Yellow
Yellow + Red
Green + Red
N
Near
UV 370 – 420 nm
Bl + Green
Blue
G
+ Red
R d
 Colour temperature range
cooll white
hit
warm white
cool and warm white
cooll and
d warm white
hit
4. Phosphor Converted LEDs
Luminescent screen
(In,Ga)N LED Yellow/orange phosphor
70
3+
Em
mission inte
ensity
Tc = 4490 K CRI = 79
Yelllow Converterr
50
0,6
0,4
0,2
,
0,0
400
Tc = 5270 K CRI = 82
60
0,8
Blue OLED
B
Emission intensity [a.u.]
2+
Ce or Eu
Phosphor
1,0
450
500
550
600
Tc = 4110 K CRI = 76
40
Tc = 3860 K CRI = 73
30
Tc = 3540 K CRI = 70
20
10
650
Wavelength [nm]
700
750
800
0
400
500
600
Wavelength [nm]
Status quo cool white pcLEDs @ 2014
• Phosphor
(Y,Gd,Tb,Lu)3Al5O12:Ce3+
(Ca,Sr,Ba)2SiO4:Eu2+
• Luminous efficacy
LE = 303 lm/W! (WPE ~ 80%)
• Colour rendering index
CRI ~ 70 - 80
• Corr.
Corr colour temperature
Tc > 5000 K
700
800
4. Phosphor Converted LEDs
Yellow Converters
Ortho-Silicates A2SiO4:Eu, Sr2LiSiO4:Eu
Oxynitrides
y
((Ca,Sr)Si
) 2N2O2:Eu
-SiAlONes
-SiAlON:Eu
Garnets
Oxynitrides
Nitrides
A3B2B’3O12:Ce
(Sr1-xBax)2SiO4:Ce,N
La3Si6N11:Ce
Sr2Si5N8:Ce
Gd2(CN2)3:Ce
C
C
Cyanamides
id
470 – 525 nm
560 nm
535 nm
540 nm
UCSB
Mitsubishi
Philips
U iTübi
UniTübingen/Münster
/Mü t
3+
3+
Gd2(CN2)3:Ce
6
Gd2(CN2)3:Ce
6
3+
Ce 4f-5d (412 nm)
540 nm
5
Intensity [10 counts]
4
5
Intensitty [105 counts]
5
3
2
3
2
1
1
0
250
4
275
300
325
350
375
400
Wavelength [nm]
425
450
475
500
Sample: 174b
0
400
425
450
475
500
525
550
575
Wavelength [nm]
600
625
650
675
Sample: 174b
4. Phosphor Converted LEDs
CRI Enhancement and colour temperature reduction of pcLEDs
4
LUXEON LEDs (Philips Lumileds)
(I G )N LED Y3Al5O12:Ce
(In,Ga)N
C
1.2
4
R d phosphor
Red
h
h
JAZZ 3300K
4
BB 3300K
4
1
4
4
08
0.8
4
0.6
4
5
0.4
0
400
0.2
450
500
550
600
650
nm
700
750
0
400
450
500
550
600
650
700
750
nm
800
Wavelength [nm]
black body 3600 K
Status quo warm white pcLEDs @ 2014
fluorescent, CCT=3600 K
•
Red phosphor
Eu2+ activated
•
Luminous efficacy LE
80 - 150 lm/W
•
Colour rendering index CRI
85 – 95
•
Corr. colour temperature Tc
2500 - 4000 K
R. Mueller-Mach, G.O. Mueller, P.J. Schmidt, T. Jüstel,
R dD
Red
Deficiency
fi i
Compensating
C
ti Phosphor
Ph
h LED , Light
Li ht Emitting
E itti D
Device,
i
US P
Patent
t t 20030006702
400
450
500
550
600
650
700
750
nm
800
4. Phosphor Converted LEDs
Red emitting LED phosphors  Eu2+ doped nitrides
585 nm
625 nm 650 nm
Ba2Si5N8:Eu
Sr2Si5N8:Eu
CaAlSiN3:Eu
1,0
Emiss
sion intensity
y [a.u.]
Ba2Si5N8:Eu
Sr2Si5N8:Eu
C 2Si
Ca
S 5N8:Eu
(Ca,Sr)AlSiN3:Eu
CaAlSiN3:Eu
0,8
0,6
04
0,4
0,2
0,0
500
550
600
650
Wavelength [nm]
700
750
800
4. Phosphor Converted LEDs
1,0
Emission spectrum
Excitation spectrum
###
1,0
Emission intensity
y [a.u.]
Blue LED + Green + Red (band emitter)
 CRI will only
y slightly
g y depend
p
on Tc
0,8
0,6
0,4
0,8
0,0
200
300
400
500
600
700
800
0,4
0,2
0,0
400
Emission spectrum
Excitation spetrum
1,0
0,8
Relative intensity
0,6
Red Converrter
Green Conv
G
verter
Wavelength (nm)
Blue LED
Emission intensity [a.u.]
0,2
0,6
0,4
0,2
450
500
550
600
650
700
Wavelength [nm]
750
800
0,0
200
300
400
500
600
700
800
Wavelength [nm]
Green emitter
G
itt
ortho-Silicates
th Sili t
(AE = Ca, Sr, Ba) Oxynitrides
ß-SiAlONes
Garnets
CaSi2N2O2 - SrSi2N2O2 Solid
AE2SiO4:Eu
E
AESi2N2O2:Eu solution without miscibility gap
 fine-tuning of green emission
ß-SiAlON:Eu
band position possible
Lu3Al5O12:Ce
4. Phosphor Converted LEDs
First all nitride LED demonstrated in 2005 (QE > 0.9, QErel(200 °C) > 0.95)
(In,Ga)N LED + SrSi2N2O2:Eu + (Sr,Ca,Ba)2Si5N8:Eu
Colour rendering index > 88
Excellent colour point stability
with drive is achieved
Drive
at 25 °C
2.50E-06
1.11E-01
4.75E-01
2.00E-06
1.92E+00
1.50E-06
2.78E+00
4 09E+00
4.09E+00
1.00E-06
5.01E-07
CCT, K
1.30E+00
5000
4500
4000
3500
3000
2500
2000
1500
1000
500
0
99
97
95
93
91
89
87
85
0
1.00E-09
380
Ra
3.00E-06
1
2
3
4
5
Current , A (pulsed)
430
480
530
580
630
680
730
780
CCT_25C
CCT_125C
Ra_25C
R. Mueller-Mach, G.O. Mueller, M.R. Krames, H.A. Höppe, F. Stadler, W. Schnick, T. Jüstel, P.J. Schmidt,
All Nitride White Light Emitting Diodes, Phys. Stat. Sol. A 202 (2005) 1727
Ra_125C
4. Phosphor Converted LEDs
Eu2+ and Yb2+ Phosphors
Emission at
1,0
490 nm
540 nm
565 nm
580 nm
610 nm
630 nm
650 nm
650 nm
Relative
e intensity
Phosphor
Eu2+ [Xe]4f7
BaSi2N2O2:Eu
SrSi2N2O2:Eu
CaSi2N2O2:Eu
Ba2Si5N8:Eu
Sr2Si5N8:Eu
(Ca,Sr)AlSiN3:Eu
Ca2Si5N8:Eu
CaAlSiN3:Eu
Excitation and emission
spectrum of SrSi2N2O2:Yb2+
Band
edge
d
0,8
0,6
14
0,4
13
1
4f - 4f 5d
0,2
0,0
100
Yb2+ [Xe]4f14
Cam/2Si12
12-m-n
m nAlm
m+n
nOnN16
16-n
n:Yb
550 nm
SrSi2N2O2:Yb
615 nm
200
300
400
500
600
700
800
Wavelength [nm]
M. Mitomo, K. Uheda et al., J. Phys. Chem. B 109 (2005) 9490
Problem: Thermal quenching
V. Bachmann,, T. Jüstel,, A. Meijerink,
j
, C.R. Ronda,, P.J. Schmidt,, J. Luminescence (2006)
(
)
4. Phosphor Converted LEDs
Thermal quenching of a typical LED converter material
2+
Mitsubishi CaAlSiN3:Eu (0,7%)
350 K
400 K
450 K
500 K
550 K
600 K
650 K
700 K
750 K
500000
400000
2+
SSL-EX-037 CaAlSiN3:Eu
70000000
Boltzmann fit of Data14_B
Emissions
sintegral [counts]
600000
Intensität [a.u.]
2+
Mitsubishi CaAlSiN3:Eu (0,7%)
300000
200000
100000
60000000
Chip-Tempe
eratur-Bereich
700000
50000000
40000000
30000000
20000000
10000000
0
0
500
600
Wellenlänge [nm]
700
800
300
400
500
600
700
800
Temperatur [K]
• Thermal quenching is a reversible process and occurs for all kind of phosphors
• The quenching temperature is a strong function of the activator, host, and its
interaction
5. Towards Ultimate Efficiency and CRI
Eu2+
Tb3+ Ln3+
Mn2+ Mn4+
Causes for the reduction in luminous efficacy
Spectral interaction due to re
re-absorption
absorption
2.
Reduction in lumen equivalent
y [ lm/W ]
1
1.
„Waste“
 [ nm ]
Band width [nm]
90 - 120
Position (nm)
635
LE (lm/W) Red LED Phosphor
257
(Ca,Sr)S:Eu
(Ca,Sr,Ba)2Si5N8:Eu
(Ca,Sr)AlSiN3:Eu
20 – 30
655
278
Mg2TiO4:Mn4+
20 – 30
620
320
Ln3+ activated
(Ln = Pr, Sm, Eu)
Mn4+ activated
50 – 60
655
269
Eu2+- activated
50 – 60
620
300
Eu2+- activated
A. Zukauskas et al., Appl. Phys.Lett. 93 (2008) 051115
5. Towards Ultimate Efficiency and CRI
Narrow-band red-emitting Sr[LiAl3N4]:Eu2+
as a next-generation LED-phosphor material
material”
W. Schnick et al., Nature Materials (2014) 1-6
Appeared on-line June 22nd
Synthesis
LiAlH4 + (1-x) SrH2 + x EuF3 + 2 AlN + N2
 (S
(Sr1-x
ux)[
)[LiAl3N4] + 3
3x HF + (3
(3-x)) H2
1 xEu
RF-furnace, 1000 °C
Optical
p
Properties
p
max = 651 nm for 5% Eu2+
FWHM = 1180 cm-1
QE(200 °C) > 95% of QE(RT)
Decay time Eu2+ ~ 1.1 µs
Exc. @ 410 nm  Photoionisation!
Strong re-absorption of YAG/LuAG PL
5. Towards Ultimate Efficiency and CRI
LED
Converter
(GE Patent US2006/0169998)
Problems:
Blue
420 – 480 nm Chip
p
Yellow
(Y,Gd,Tb,Lu)Al5O12:Ce
Red
Mn4+- phosphor
Tb3Al5O12:3%Ce + K2[TiF6]:Mn4+
Absorption strength, decay time and stability of red line emitter
5. Towards Ultimate Efficiency and CRI
CaAlSiN3:Eu (Mitsubishi Chemicals)
Reduced re-absorption
 to increase package gain
6
1
[Xe]4f 5d
7
- [Xe]4f
0,8
0,6
0,4
0,2
Emission spectrum
Excitation spectrum
0,0
300
400
500
600
700
800
Wavelength [nm]
3+
Red emitting ion
Eu2+
Eu3+
Sm3+
Pr3+
Mn4+
Cr3+
Fe3+
LE [lm/Wopt.]
80 - 200
220 – 360
240 – 260
200 – 220
80 – 150
< 100
< 100
NaGdW2O8:Eu (60%)
Emission spectrum
Excitation spectrum
1,0
Norma
alised intensity [a
a.u.]
•
1,0
Norm
malised intensity [[a.u.]
Challenges
• Red narrow band or line emitter
 to increase lumen equivalent
QE465 = 48.1%
RQ465 = 75.8%
QE394 = 54.8%
0,8
RQ394 = 63.5%
0,6
x = 0.668
y = 0.331
LE = 268 lm/W
max = 616 nm
0,4
centroid= 627 nm
0,2
0,0
300
400
500
600
Wavelength [nm]
700
800
5. Towards Ultimate Efficiency and CRI
Eu3+ doped Molybdates, e.g. LiLaMo2O8:Eu and Tb2Mo3O12:Eu
Luminescence spectra
10
1,0
T-dependent integral emission intensity
Emission spectrum
Excitation spectrum
5%
6
0,6
0,4
0,2
0,0
250
300
350
400
450
500
550
600
650
700
750
Wavelength [nm]
1,0
Normalized Intensity
100% Eu3+
•
Integral intensity
Emisssion maxima [Cou
unts]
Normalised
d intensity
0,8
6
5x10
Eu3+
4x10
6
3x10
6
2x10
6
1x10
0
100
200
300
400
500
Temperature [K]
0,5
0,0
250
300
350
400
450
Wavelength [nm]
500
550
600
QE465 ~ 100%
R465 = 75%
R395 = 60%
CIE x = 0.665
CIE y = 0.333
LE = 269 lm/Wopt
max = 614 nm
centroid = 623 nm
1/e = 0.39 ms (0.2 x Y2O3:Eu)
d50 = 4.2 µm
• Patent Application Publication US2007/0090327, “Novel red fluorescent powder”, Industrial Technology Research Institute, Taiwan
• M. Rico, U. Giebner, et.al, “Growth, spectroscopy, and tunable laser operation of the disordered crystal LiGd(MoO4)2 doped with ytterbium”, J. Opt. Soc. Am. B
22 (2006) 1083
5. Towards Ultimate Efficiency and CRI
465 nm InGaN LED
0,5
1,0
0,5
Tb3+
0,0
400
Normaliz
zed Intensity [~counts]
465 nm LED
+ Tb2Mo3O12:Eu3+ (40%) ceramic
465 nm LED
450
1,0
500
550 400
380 nm LED
450
500
550
Wavelength [nm]
600
650
700
750
0,0
800
1,0
380 nm LED
+ Tb2Mo3O12:Eu3+ (40%) ceramic
0,5
0,5
0,0
360
380
400
420
350
400
450
500
Wa elength [nm]
Wavelength
550
600
650
700
750
0,0
800
Norma
alized Intensity [[~counts]
380 nm InGaN LED
 Full conversion
LED poss
possible
be
1,0
Normalized Inten
N
nsity [~counts]
Normalized In
ntensity [~counts
s]
Phosphor converted LED comprising Tb2Mo3O12:Eu
5. Towards Ultimate Efficiency and CRI
LE and CRI calculations of warm-white phosphor converted LEDs
Tb2Mo3O12:Eu
gives 20% higher
LE compared
to SrLiAl3N4:Eu
The reduced rere
absorption in Eu3+
phosphor
comprising
i i LEDs
LED
gives potentially
higher package
gain as well …..
5. Towards Ultimate Efficiency and CRI
Powder/polymer composites
Ceramics
Variable layer thickness
Strong scattering
High thermal resistance
Drop-Stop
Homogeneous layer thickness
Little scattering
Low thermal resistance
Pick & Place
Blue LED + inorganic luminescent
powder in epoxy- or silicon resin
Blue LED + ceramic converter
(Lumiramic or c2)
5. Towards Ultimate Efficiency and CRI
Eu3+ doped molybdates as red colour converter in white-emitting pcLEDs
 Useful in near UV emitting LEDs (380 - 420 nm)
 Conversion
C
i
off red
d emitting
itti powders
d
into
i t ceramics
i
1,0
LiEuMo2O8
LED Max = 394 nm
LED Max= 464 nm
Intensity [a.u
u.]
0,8
0,6
0,4
0,2
0,0
250
300
350
400
450
Wavelength [nm]
500
550
6. Summary and Outlook
LiEuMo2O8, Li3Ba2Eu3Mo8O32, Tb2Mo3O12:Eu (Sm) - Are these
luminescent converters applicable in white light emitting pcLEDs?
+
+
+
+
+
Cost effective and scalable synthesis routes
~ 20% higher lumen equivalent than Eu2+ doped sulphides and nitrides
Quantum yield at ambient temperature close to unity
Less than 20% thermal quenching upon heating to 150 °C
Reasonable absorption strength between 370 and 410 nm
-
Narrow
a o width
dt of
o absorption
abso pt o 4f-4f line
e multiplets
u t p ets
Diffuse reflectance at 465 and 535 nm still 70 - 80%
 Useful in pcLEDs comprising a near UV emitting (In
(In,Ga)N
Ga)N die (370 – 410 nm)
as a pump source
 Further optimisation by ceramic preparation or multiple activator ion sites,
as inTb2MoO6:Eu
6. Summary and Outlook
Warm white LEDs
Blue chip
p
Ln3Al5O12:Ce
CaS:Eu/Sr2Si5N8:Eu
CaAlSiN3:Eu
Red line emitters Eu3+ doped molybdates/tungstates
• Strong absorption at 395, 465, 535 nm
• Quantum efficiency ~ 100%
• Problem: Absorption strength in the blue
weak compared to CaS:Eu and Sr2Si5N8:Eu
Warm White LEDs (near UV)
Blue/cyan
y luminescent material
Ln3Al5O12:Ce
CaS:Eu/Sr2Si5N8:Eu/CaAlSiN3:Eu
Eu3+-doped
doped molybdates
LiLaMo2O8:5%Eu
1,0
0,8
Relative intensity
Cool white LEDs
1. Blue chip
p
2. Ln3Al5O12:Ce
3. None
3+
5
Emission spectrum
Excitation spectrum
Reflection spectrum
QE465 = 41%
7
D0 - FJ
RQ465 = 65%
0,6
04
0,4
0,2
0,0
150
Next steps
Wavelength [nm]
• Increase average particle size to enhance absorption strength
• Final goal: Transparent ceramics?
• Development of further stable green
green, yellow and red line phosphors with
high luminous efficiency
200
250
300
350
400
450
500
550
600 650 700 750
Sample DU084-06
6. Summary and Outlook
Increase of the
power density
 8000 lm module (CREE)
Further p
power density
y
increase will require
phosphors with improved
linearity
Optical power density o
of LED [W
W/cm2]
1000
100
10
1
0.1
0.01
0.001
1960
1970
1980
1990
2000
Year
Development of the power density of LED
(source: fairchildsemi.com)
fairchildsemi com)
2010
Acknowledgement
•
Research Group “Tailored Optical Materials“
for synthesis, photographs, spectroscopy, and
so on….
•
University Tübingen, Germany
Prof. Jürgen Meyer for inspiring discussions
on solid state chemistry
•
Universiteit Utrecht, The Netherlands
Prof. Andries Meijerink for fruitful discussions
on luminescence physics
•
FEE Idar-Oberstein for crystal growth and
fr itf l collaboration on laser gain media
fruitful
•
Merck KGaA Darmstadt for generous financial
support
pp