Page 1 Page 2 距離と内属の存在論 ためには「私が光景に意味を与える

Title
Author
Publisher
Jtitle
Abstract
Genre
URL
Powered by TCPDF (www.tcpdf.org)
音楽購買における新しい消費者行動モデルのシステムデザイン :
ベイジアンネットワークを用いた有償購買確率向上モデル
安田, 照(Yasuda, Akira)
当麻, 哲哉(Toma, Tetsuya)
慶應義塾大学大学院システムデザイン・マネジメント研究科
修士論文 (2013. 3)
Thesis or Dissertation
http://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KO40002001-00002012
-0057
2013
3
1
Master's Dissertation
2012
Designing of Novel Consumer Behavior
Model of Music Purchase
-The Model for Enhancing Purchase Probability by
Bayesian Network -
Akira Yasuda
(Student ID Number : 81133614)
Supervisor Tetsuya Toma
March 2013
Graduate School of System Design and Management, Keio University
Major in System Design and Management
2
81133614
1998
IT
Shapiro &
Varian, 1999
Robert
Ioanna(2011)
420
400
20
Greedy Search
5
SUMMARY OF MASTER’S DISSERTATION
Student
Identification
Number
81133614
Name
Akira Yasuda
Title
Designing of Novel Consumer Behavior Model of Music Purchase
-The Model for Enhancing Purchase Probability by Bayesian Network Abstract
The music software market in Japan has been decreasing since 1998 mainly due to the illegal music
download. As a background, music today has become free downloadable information goods rather than
purchased material goods due to digitization of sound sources and diffusion of broadband internet
(Shapiro & Varian, 1999). On the other hand, some consumer is still willing to purchase music with
specific intentions. We highlighted Japanese music consumer behavior of purchasing music software
rather than acquiring it through internet without payment. The purpose of the research is to analyze
the purchase intentions of Japanese music consumers using Bayesian network modeling so as to
understand the essential causes for the payment. First of all, we conducted the multiple interviews with
Japanese music consumers and identified the five major purchase intentions: 1) appreciation intention,
2) collection intention, 3) value-added intention, 4) support intention, and 5) communication intention.
Our hypothesis is that “Music” influences to “Appreciation intention”, “Looks” and “Humanity”
influence to “Collection intention” and “Value-added intention”, and “Activity” influence to “Support
intention” and “Communication intention”. The scrutiny of these purchase intentions is the originality
of the research. Robert and Ioanna (2011) analyzed both legal and illegal acquisition of music software
but they did not consider the purchase intentions of consumers and therefore their model could not
answer why consumer tempted to pay for the music even when they could acquire it without payment.
Second, we conducted an online questionnaire on a sample of 420 people. We asked their "purchase
method", "purchase intention", "attitude", "confidence", "awareness of illegal downloading", "music
purchase amount", and "consumers attribute". Third, we build the Bayesian network model using 400
samples and validated the model with the other 20 samples. The structure of the model was defined by
structural learning method using greedy search algorithms. The results showed that different purchase
intentions be made from the differences of consumer’s attitude and confidence. Among the five purchase
intentions, appreciation intention was influenced by every confidence and attitude factors and therefore
would be a common driver for every purchase. Collection intention was influenced by “looks” and
“activity”, value-added intention was influenced by “humanity”, “live shows”, and “animation”, and
support intention was influenced by “background” and “plan”. This means that we are able to estimate
consumer’s purchase method on the basis of their attitude and confidence on music. Finally, we
examined estimation accuracy of the model concerning each consumer’s music purchase behavior. We
compared the model estimation results and the answers from the marketing managers of music
industry in Japan. The result showed that the model could provide the right answer with around 60% of
probability and the managers with only around 20% of probability.
Key Word(5 words)
Music purchase, Consumer behavior model, Bayesian Network, Information goods, Purchase
intention.
................................................................................... 9
............................................................................. 10
.......................................................... 10
................................................................... 11
............................................................................................ 11
P2P
................................................................. 12
................................................................ 13
............................................................. 13
............................................................... 13
........................................... 14
............................................. 14
...................................................................... 17
................................................................................... 17
................................................................... 17
................................................... 17
................................................................. 18
.................................... 19
............................................................................ 20
........................................................... 21
............................................................................... 21
.................................................................................. 22
............................................................................ 22
.................................................................. 24
....................................................................... 24
....................................................... 24
........................................................... 24
................................................................. 25
......................................................................... 25
.......................................................................... 26
................................................................. 26
3
....................................................................... 28
................................................................................ 29
......................................................................... 31
....................................................... 31
............................................. 32
............................................. 33
....................................................................... 35
.......................................................... 36
......................................................................... 37
..................................................................... 40
.............................................................. 40
............................................................................... 40
............................................................................ 41
......................................................................... 42
.......................................................................... 43
............................................................................. 46
............................................................................ 46
............................................................................ 47
................................................................................... 49
................................................................. 50
................................................................................. 52
......................................................................................... 52
......................... 52
......................................................................................... 52
....................................................................... 52
60
............................................................................. 53
................................................................ 53
F
F-measure
.................................................. 53
............................................................................................ 54
............................................................................ 54
................................................................................ 55
................................................................... 56
....................................................... 57
......................................................................................... 59
4
................................................................................. 62
...................................................................................... 62
................................................................................ 63
....................................................................................... 66
5
6
7
8
•
9
10
11
P2P
1
P2P
12
•
13
14
Fig.
2
1992
.
Anderson
5
http://radiohead.com/
3
15
Fig.
Fig.
4
.
.
Radiohead
Pay-what-you-want
Prince
1978
16
17
Fig.
5
.
Lacher
http://magnatune.com/
18
Fig.
.
Magnatune
19
Fig.
6
.
Robert
Ioanna
http://www.saulwilliams.com/
20
7
5
21
•
8
INCOSE
The International Council on Systems Engineering
22
9
(IF)
23
24
Fig.
.
Howard
Howard
•
25
10
1989
26
Table.
.
Nine Inch Nails
The Ghost
-
11
27
28
Table.
.
2001
12
29
Fig.
Fig.
13
.
.
M.A.F
Jamendo
http://www.jamendo.com/en/
30
31
32
33
Table.
.
34
Table.
.
•
35
Table.
.
•
36
Table.
.
•
37
38
Fig.
.
39
X
Y
x
Y
X
Y
Y
y
X
X
X
Y
X1
Xn
X1
Xn
X1
Y1
n
Xn
Pa
X1
X1,…,Xn
40
X2
X3 X4
X3
X1 X2
Table.
Fig.
.
.
41
Xi
Pa(X1)
P(Xi | PaXi)
Xi = Xi1,…,Xik
θi1,,,,θik
Pa(X1)
Y=Y1,,,Yj
Y
X1
θi1
Y
,,,θik
Y
Pa(Xi)
42
Fig.
.
CPT
43
44
45
Table.
.
14
46
400
Bayonet
Greedy Search
AIC
Greedy Search
AIC
0.01
•
Table.
.
47
Fig.
.
48



3
49
Table.
.
Table.
.
50
51
[37]
[38]
52
60
[36]
F
F-m easure
TP
TP + FP
TP
recall =
TP + FN
2 * precision * recall
F-measure =
precision + recall
precision=
53
Table.
.
1(YES)
2(NO)
0
0.880
•
54
Table.
Table.
.
Table.
.
.
F-Measure
55
400
400
1
2
3
3
50
Fig
.
56
400
1
2
2012
3
12
22
2013
1
30
1
Bayonet
10
4
40
0
10
10
2
0
20
1
Bayonet
Bayonet
45
20
20
7
35
6
9
20
Bayonet
Bayonet
30
4
20
30
16
20
53
30
9
30
Bayonet
1
15
16
2
3
http://www.side-connection.com/
http://www.avex.co.jp/
57
Table.
.
1
Table.
.
2
Table.
.
3
58
F
•
F
•
3
2
2(No)
16
14
F
60
59
F
0
Pay
F
0.4
Pay
Table4.9
Quality
F
0.2857
Quality
Booklet
F
0.2857
Booklet
Cloud
Deirect CD iTunes
Livestream
Delux
F
20
F
F
0.4267
60
Table.
.
Table.
F
.
61
62
63
64
!
25
1
31
65
1.
Lacher,
K.T.a.R.M.,
“An
Exploratory
study
of
the
responses
and
relationships involved in the evaluation of, and in the intention to purchase
new rock music. Journal of Consumer Research, 1994. Vol. 21 (Sep): p. pp.
366 – 380.
2.
Veitch, R., et al., Digital Product Acquisition In The Context Of Piracy.
PACIS 2011 Proceedings¥, 2011.
3.
Sandulli, F.D., CD music purchase behaviour of P2P users. Technovation,
2007. 27(6–7): p. 325-334.
4.
日 本 レ コ ー ド 協 会 ,
一 .
各 種 統 計 .
2012;
Available
from:
http://www.riaj.or.jp/data/index.html.
5.
日本レコード協会, 一.
6.
日本レコード協会, 違法配信に関する利用実態調査, 2011.
7.
文 化 庁 .
. 2012
著 作 権 制 度 の 解 説 資 料 .
2012;
Available
from:
http://www.bunka.go.jp/chosakuken/index_3.html.
8.
Kusek, D., G. Leonhard, and yomoyomo, デジタル音楽の行方 : 音楽産業の死
と再生、音楽はネットを越える. 2005, [東京]: 翔泳社, 2005.12. iv, 282 p.
9.
瀬藤
, 丹羽 順子, インターネット時代の音楽著作権と収益モデルの検討
--『弱い著作権』の音楽情報財の収益モデルを巡って (文化の創造と享受の共通
基盤). 文化経済学, 2005. 4(4): p. 43-56.
10.
マイボイスコム株式会社, 音楽ダウンロードの利用(第5回), 2012.
11.
音楽離れに歯止めかからず。ダウンロードの刑事罰化の効果は , in livedoor
NEWS2012.
12.
服部
, 情報財の収益モデル : デジタル化・ネットワーク化されたメディア
環境における音楽情報財の収益モデル. 2001. 1 冊.
13.
林
, 著作権の法と経済学. 2004, 東京: 勁草書房, 2004.6. xviii, 266 p.
情報化と経済システムの転換. 2001, 東京: 東洋経済新
14.
報社, 2001.9. xii, 298 p.
15.
大谷 卓史, 亀井 聡, 高橋 寛幸, P2P がビジネスを変える: ダイレクトな情報
66
交換とコミュニケーションの未来. 2001: 翔泳社.
16.
Shapiro, C., H.R. Varian, and 喜. 宮本, 「ネットワーク経済」の法則 : アト
ム型産業からビット型産業へ--変革期を生き抜く 72 の指針. 1999, 東京: IDG コ
ミュニケーションズ, 1999.6. 567 p.
17.
Anderson, C. and 高橋 則明, フリー : <無料>からお金を生みだす新戦略 .
2009, 東京: 日本放送出版協会, 2009.11. 350 p.
18.
Regner, T. and J.A. Barria, Do consumers pay voluntarily? The case of online
music. Journal of Economic Behavior & Organization, 2009. 71(2): p.
395-406.
19.
Geanakoplos, J., D. Pearce, and E. Stacchetti, Psychological games and
sequential rationality. Games and Economic Behavior, 1989. 1(1): p. 60-79.
20.
Rabin, M., Incorporating Fairness into Game Theory and Economics.
American Economic Review, 1993. 83(5): p. 1281-1302.
21.
Dufwenberg, M. and G. Kirchsteiger, A theory of sequential reciprocity.
Games and Economic Behavior, 2004. 47(2): p. 268-298.
22.
Perugini, M. and R.P. Bagozzi, The role of desires and anticipated emotions
in goal-directed behaviours: broadening and deepening the theory of planned
behaviour. Br J Soc Psychol, 2001. 40(Pt 1): p. 79-98.
23.
Hunt, S.D. and S. Vitell, A General Theory of Marketing Ethics. Journal of
Macromarketing, 1986. 6(1): p. 5-16.
, 犯罪と刑罰 : 経済学的アプローチ. 北海学園大学
24.
法学研究, 2005. 41(3): p. 606-558.
25.
Thaler, R., Mental Accounting and Consumer Choice. Marketing Science,
1985. 4(3): p. 199-214.
26.
Kaplan, L.B., G.J. Szybillo, and J. Jacoby, Components of perceived risk in
product purchase: A cross-
. Journal of Applied Psychology, 1974.
59(3): p. 287-291.
27.
James R. Bettman, Mary Frances Luce, and John W. Payne, Constructive
Consumer Choice Processes. Journal of Consumer Research, 1998. 25(3): p.
187-217.
28.
Howard, J.A., Consumer behavior in marketing strategy. 1989, Englewood
Cliffs, NJ: Prentice Hall.
29.
坂下 玄哲, 消費者行動のモデル化の試み : 歴史的経緯. 上智經濟論集, 2005.
67
50(1): p. 97-114.
30.
Howard, J.A. and J.N. Sheth, The theory of buyer behavior. 1969, New York:
Wiley.
31.
Bettman, J.R., An information processing theory of consumer choice / James
R. Bettman. Advances in marketing series. 1979, Reading, Mass. ::
Addison-Wesley Pub. Co.
32.
榎本 幹朗, Spotify のその先。日本のレコー産業、黄金時代の引き寄せ方, in 「未
来は音楽が連れてくる」2012.
33.
N.V, N.H., The Nielsen Company & Billboard 2012 Mid-Year U.S. Music
Industry Report, 2012.
34.
IFPI, Digital Music Report 2012, 2012.
35.
野村総合研究所, オタク市場の研究. 2005, 東京: 東洋経済新報社, 2005.10. vii,
264 p.
36.
本村 陽一, ベイジアンネットワークによる確率的人間行動モデリング, in 学位
論文. p. 1 - 117.
37.
星野 崇宏, ブランドイメージに関する広告政策を策定するための階層ベイズ的
な選択モデルとその応用. マーケティングサイエンス, 2008. 15(1): p. 27-44.
38.
椿 美智子, 岩崎 晃, ベイジアンネットワークを用いた学生タイプ別教育効果
分析における測定精度・予測精度の検証. 教育情報研究 : 日本教育情報学会学
会誌, 2011. 26(4): p. 25-36.
68
69
1
70
71
72
73
74
2
75
76
77
78
79
80
3
13/01/25
Survey | Qualtrics Survey Software
17
CD
○
×
DVD
○
×
○
○
×
×
20
550
CD
×
○
×
DVD
×
○
×
×
×
https://sdmkeio.qualtrics.com/SE/?SID=SV_7OoJyp1fcvZ6KFv&Preview=Survey&BrandID=sdmkeio
1/13
81
13/01/25
Survey | Qualtrics Survey Software
○
○
×
×
×
×
×
×
×
○
○
○
1. Pay-­what-­you-­want
2. 3. D
D
4. 5. CD
6. CD
7. DVD
8. CD
CD
9. CD
CD
10. 11. 10
550
https://sdmkeio.qualtrics.com/SE/?SID=SV_7OoJyp1fcvZ6KFv&Preview=Survey&BrandID=sdmkeio
2/13
82
83
84
85
86
87
88
89
90
91
92
93