Title Author Publisher Jtitle Abstract Genre URL Powered by TCPDF (www.tcpdf.org) 音楽購買における新しい消費者行動モデルのシステムデザイン : ベイジアンネットワークを用いた有償購買確率向上モデル 安田, 照(Yasuda, Akira) 当麻, 哲哉(Toma, Tetsuya) 慶應義塾大学大学院システムデザイン・マネジメント研究科 修士論文 (2013. 3) Thesis or Dissertation http://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KO40002001-00002012 -0057 2013 3 1 Master's Dissertation 2012 Designing of Novel Consumer Behavior Model of Music Purchase -The Model for Enhancing Purchase Probability by Bayesian Network - Akira Yasuda (Student ID Number : 81133614) Supervisor Tetsuya Toma March 2013 Graduate School of System Design and Management, Keio University Major in System Design and Management 2 81133614 1998 IT Shapiro & Varian, 1999 Robert Ioanna(2011) 420 400 20 Greedy Search 5 SUMMARY OF MASTER’S DISSERTATION Student Identification Number 81133614 Name Akira Yasuda Title Designing of Novel Consumer Behavior Model of Music Purchase -The Model for Enhancing Purchase Probability by Bayesian Network Abstract The music software market in Japan has been decreasing since 1998 mainly due to the illegal music download. As a background, music today has become free downloadable information goods rather than purchased material goods due to digitization of sound sources and diffusion of broadband internet (Shapiro & Varian, 1999). On the other hand, some consumer is still willing to purchase music with specific intentions. We highlighted Japanese music consumer behavior of purchasing music software rather than acquiring it through internet without payment. The purpose of the research is to analyze the purchase intentions of Japanese music consumers using Bayesian network modeling so as to understand the essential causes for the payment. First of all, we conducted the multiple interviews with Japanese music consumers and identified the five major purchase intentions: 1) appreciation intention, 2) collection intention, 3) value-added intention, 4) support intention, and 5) communication intention. Our hypothesis is that “Music” influences to “Appreciation intention”, “Looks” and “Humanity” influence to “Collection intention” and “Value-added intention”, and “Activity” influence to “Support intention” and “Communication intention”. The scrutiny of these purchase intentions is the originality of the research. Robert and Ioanna (2011) analyzed both legal and illegal acquisition of music software but they did not consider the purchase intentions of consumers and therefore their model could not answer why consumer tempted to pay for the music even when they could acquire it without payment. Second, we conducted an online questionnaire on a sample of 420 people. We asked their "purchase method", "purchase intention", "attitude", "confidence", "awareness of illegal downloading", "music purchase amount", and "consumers attribute". Third, we build the Bayesian network model using 400 samples and validated the model with the other 20 samples. The structure of the model was defined by structural learning method using greedy search algorithms. The results showed that different purchase intentions be made from the differences of consumer’s attitude and confidence. Among the five purchase intentions, appreciation intention was influenced by every confidence and attitude factors and therefore would be a common driver for every purchase. Collection intention was influenced by “looks” and “activity”, value-added intention was influenced by “humanity”, “live shows”, and “animation”, and support intention was influenced by “background” and “plan”. This means that we are able to estimate consumer’s purchase method on the basis of their attitude and confidence on music. Finally, we examined estimation accuracy of the model concerning each consumer’s music purchase behavior. We compared the model estimation results and the answers from the marketing managers of music industry in Japan. The result showed that the model could provide the right answer with around 60% of probability and the managers with only around 20% of probability. Key Word(5 words) Music purchase, Consumer behavior model, Bayesian Network, Information goods, Purchase intention. ................................................................................... 9 ............................................................................. 10 .......................................................... 10 ................................................................... 11 ............................................................................................ 11 P2P ................................................................. 12 ................................................................ 13 ............................................................. 13 ............................................................... 13 ........................................... 14 ............................................. 14 ...................................................................... 17 ................................................................................... 17 ................................................................... 17 ................................................... 17 ................................................................. 18 .................................... 19 ............................................................................ 20 ........................................................... 21 ............................................................................... 21 .................................................................................. 22 ............................................................................ 22 .................................................................. 24 ....................................................................... 24 ....................................................... 24 ........................................................... 24 ................................................................. 25 ......................................................................... 25 .......................................................................... 26 ................................................................. 26 3 ....................................................................... 28 ................................................................................ 29 ......................................................................... 31 ....................................................... 31 ............................................. 32 ............................................. 33 ....................................................................... 35 .......................................................... 36 ......................................................................... 37 ..................................................................... 40 .............................................................. 40 ............................................................................... 40 ............................................................................ 41 ......................................................................... 42 .......................................................................... 43 ............................................................................. 46 ............................................................................ 46 ............................................................................ 47 ................................................................................... 49 ................................................................. 50 ................................................................................. 52 ......................................................................................... 52 ......................... 52 ......................................................................................... 52 ....................................................................... 52 60 ............................................................................. 53 ................................................................ 53 F F-measure .................................................. 53 ............................................................................................ 54 ............................................................................ 54 ................................................................................ 55 ................................................................... 56 ....................................................... 57 ......................................................................................... 59 4 ................................................................................. 62 ...................................................................................... 62 ................................................................................ 63 ....................................................................................... 66 5 6 7 8 • 9 10 11 P2P 1 P2P 12 • 13 14 Fig. 2 1992 . Anderson 5 http://radiohead.com/ 3 15 Fig. Fig. 4 . . Radiohead Pay-what-you-want Prince 1978 16 17 Fig. 5 . Lacher http://magnatune.com/ 18 Fig. . Magnatune 19 Fig. 6 . Robert Ioanna http://www.saulwilliams.com/ 20 7 5 21 • 8 INCOSE The International Council on Systems Engineering 22 9 (IF) 23 24 Fig. . Howard Howard • 25 10 1989 26 Table. . Nine Inch Nails The Ghost - 11 27 28 Table. . 2001 12 29 Fig. Fig. 13 . . M.A.F Jamendo http://www.jamendo.com/en/ 30 31 32 33 Table. . 34 Table. . • 35 Table. . • 36 Table. . • 37 38 Fig. . 39 X Y x Y X Y Y y X X X Y X1 Xn X1 Xn X1 Y1 n Xn Pa X1 X1,…,Xn 40 X2 X3 X4 X3 X1 X2 Table. Fig. . . 41 Xi Pa(X1) P(Xi | PaXi) Xi = Xi1,…,Xik θi1,,,,θik Pa(X1) Y=Y1,,,Yj Y X1 θi1 Y ,,,θik Y Pa(Xi) 42 Fig. . CPT 43 44 45 Table. . 14 46 400 Bayonet Greedy Search AIC Greedy Search AIC 0.01 • Table. . 47 Fig. . 48 3 49 Table. . Table. . 50 51 [37] [38] 52 60 [36] F F-m easure TP TP + FP TP recall = TP + FN 2 * precision * recall F-measure = precision + recall precision= 53 Table. . 1(YES) 2(NO) 0 0.880 • 54 Table. Table. . Table. . . F-Measure 55 400 400 1 2 3 3 50 Fig . 56 400 1 2 2012 3 12 22 2013 1 30 1 Bayonet 10 4 40 0 10 10 2 0 20 1 Bayonet Bayonet 45 20 20 7 35 6 9 20 Bayonet Bayonet 30 4 20 30 16 20 53 30 9 30 Bayonet 1 15 16 2 3 http://www.side-connection.com/ http://www.avex.co.jp/ 57 Table. . 1 Table. . 2 Table. . 3 58 F • F • 3 2 2(No) 16 14 F 60 59 F 0 Pay F 0.4 Pay Table4.9 Quality F 0.2857 Quality Booklet F 0.2857 Booklet Cloud Deirect CD iTunes Livestream Delux F 20 F F 0.4267 60 Table. . Table. F . 61 62 63 64 ! 25 1 31 65 1. Lacher, K.T.a.R.M., “An Exploratory study of the responses and relationships involved in the evaluation of, and in the intention to purchase new rock music. Journal of Consumer Research, 1994. Vol. 21 (Sep): p. pp. 366 – 380. 2. Veitch, R., et al., Digital Product Acquisition In The Context Of Piracy. PACIS 2011 Proceedings¥, 2011. 3. Sandulli, F.D., CD music purchase behaviour of P2P users. Technovation, 2007. 27(6–7): p. 325-334. 4. 日 本 レ コ ー ド 協 会 , 一 . 各 種 統 計 . 2012; Available from: http://www.riaj.or.jp/data/index.html. 5. 日本レコード協会, 一. 6. 日本レコード協会, 違法配信に関する利用実態調査, 2011. 7. 文 化 庁 . . 2012 著 作 権 制 度 の 解 説 資 料 . 2012; Available from: http://www.bunka.go.jp/chosakuken/index_3.html. 8. Kusek, D., G. Leonhard, and yomoyomo, デジタル音楽の行方 : 音楽産業の死 と再生、音楽はネットを越える. 2005, [東京]: 翔泳社, 2005.12. iv, 282 p. 9. 瀬藤 , 丹羽 順子, インターネット時代の音楽著作権と収益モデルの検討 --『弱い著作権』の音楽情報財の収益モデルを巡って (文化の創造と享受の共通 基盤). 文化経済学, 2005. 4(4): p. 43-56. 10. マイボイスコム株式会社, 音楽ダウンロードの利用(第5回), 2012. 11. 音楽離れに歯止めかからず。ダウンロードの刑事罰化の効果は , in livedoor NEWS2012. 12. 服部 , 情報財の収益モデル : デジタル化・ネットワーク化されたメディア 環境における音楽情報財の収益モデル. 2001. 1 冊. 13. 林 , 著作権の法と経済学. 2004, 東京: 勁草書房, 2004.6. xviii, 266 p. 情報化と経済システムの転換. 2001, 東京: 東洋経済新 14. 報社, 2001.9. xii, 298 p. 15. 大谷 卓史, 亀井 聡, 高橋 寛幸, P2P がビジネスを変える: ダイレクトな情報 66 交換とコミュニケーションの未来. 2001: 翔泳社. 16. Shapiro, C., H.R. Varian, and 喜. 宮本, 「ネットワーク経済」の法則 : アト ム型産業からビット型産業へ--変革期を生き抜く 72 の指針. 1999, 東京: IDG コ ミュニケーションズ, 1999.6. 567 p. 17. Anderson, C. and 高橋 則明, フリー : <無料>からお金を生みだす新戦略 . 2009, 東京: 日本放送出版協会, 2009.11. 350 p. 18. Regner, T. and J.A. Barria, Do consumers pay voluntarily? The case of online music. Journal of Economic Behavior & Organization, 2009. 71(2): p. 395-406. 19. Geanakoplos, J., D. Pearce, and E. Stacchetti, Psychological games and sequential rationality. Games and Economic Behavior, 1989. 1(1): p. 60-79. 20. Rabin, M., Incorporating Fairness into Game Theory and Economics. American Economic Review, 1993. 83(5): p. 1281-1302. 21. Dufwenberg, M. and G. Kirchsteiger, A theory of sequential reciprocity. Games and Economic Behavior, 2004. 47(2): p. 268-298. 22. Perugini, M. and R.P. Bagozzi, The role of desires and anticipated emotions in goal-directed behaviours: broadening and deepening the theory of planned behaviour. Br J Soc Psychol, 2001. 40(Pt 1): p. 79-98. 23. Hunt, S.D. and S. Vitell, A General Theory of Marketing Ethics. Journal of Macromarketing, 1986. 6(1): p. 5-16. , 犯罪と刑罰 : 経済学的アプローチ. 北海学園大学 24. 法学研究, 2005. 41(3): p. 606-558. 25. Thaler, R., Mental Accounting and Consumer Choice. Marketing Science, 1985. 4(3): p. 199-214. 26. Kaplan, L.B., G.J. Szybillo, and J. Jacoby, Components of perceived risk in product purchase: A cross- . Journal of Applied Psychology, 1974. 59(3): p. 287-291. 27. James R. Bettman, Mary Frances Luce, and John W. Payne, Constructive Consumer Choice Processes. Journal of Consumer Research, 1998. 25(3): p. 187-217. 28. Howard, J.A., Consumer behavior in marketing strategy. 1989, Englewood Cliffs, NJ: Prentice Hall. 29. 坂下 玄哲, 消費者行動のモデル化の試み : 歴史的経緯. 上智經濟論集, 2005. 67 50(1): p. 97-114. 30. Howard, J.A. and J.N. Sheth, The theory of buyer behavior. 1969, New York: Wiley. 31. Bettman, J.R., An information processing theory of consumer choice / James R. Bettman. Advances in marketing series. 1979, Reading, Mass. :: Addison-Wesley Pub. Co. 32. 榎本 幹朗, Spotify のその先。日本のレコー産業、黄金時代の引き寄せ方, in 「未 来は音楽が連れてくる」2012. 33. N.V, N.H., The Nielsen Company & Billboard 2012 Mid-Year U.S. Music Industry Report, 2012. 34. IFPI, Digital Music Report 2012, 2012. 35. 野村総合研究所, オタク市場の研究. 2005, 東京: 東洋経済新報社, 2005.10. vii, 264 p. 36. 本村 陽一, ベイジアンネットワークによる確率的人間行動モデリング, in 学位 論文. p. 1 - 117. 37. 星野 崇宏, ブランドイメージに関する広告政策を策定するための階層ベイズ的 な選択モデルとその応用. マーケティングサイエンス, 2008. 15(1): p. 27-44. 38. 椿 美智子, 岩崎 晃, ベイジアンネットワークを用いた学生タイプ別教育効果 分析における測定精度・予測精度の検証. 教育情報研究 : 日本教育情報学会学 会誌, 2011. 26(4): p. 25-36. 68 69 1 70 71 72 73 74 2 75 76 77 78 79 80 3 13/01/25 Survey | Qualtrics Survey Software 17 CD ○ × DVD ○ × ○ ○ × × 20 550 CD × ○ × DVD × ○ × × × https://sdmkeio.qualtrics.com/SE/?SID=SV_7OoJyp1fcvZ6KFv&Preview=Survey&BrandID=sdmkeio 1/13 81 13/01/25 Survey | Qualtrics Survey Software ○ ○ × × × × × × × ○ ○ ○ 1. Pay-what-you-want 2. 3. D D 4. 5. CD 6. CD 7. DVD 8. CD CD 9. CD CD 10. 11. 10 550 https://sdmkeio.qualtrics.com/SE/?SID=SV_7OoJyp1fcvZ6KFv&Preview=Survey&BrandID=sdmkeio 2/13 82 83 84 85 86 87 88 89 90 91 92 93
© Copyright 2024 ExpyDoc