982 ú{à®wï æ 68 ª æ 12 (2004)977_ ÁWuvZóÔ}ÆÞ¿ÝvÖÌWJv æê´vZÉæé a_Fe Ìu·^³fÆ Nü^³fÌÝìp Vcp¾ ìãal R¹Í Vú{»c®ïÐæ[Zp¤ J. Japan Inst. Metals, Vol. 68, No. 12 (2004), pp. 977_982 Special Issue on Computer Aided Phase Diagram Assessment and Its Extension to Materials Design Ý 2004 The Japan Institute of Metals Interaction between Substitutional and Interstitial Elements in a_Fe Studied by First_Principles Calculation Hideaki Sawada, Kazuto Kawakami and Masaaki Sugiyama Advanced Technology Research Laboratories, Nippon Steel Corporation, Futtsu 293_ 8511 Interaction energy values between substitutional 3d transition metal elements and interstitial carbon atom in a_ Fe is obtained by the first_principles calculation method. Calculated values of interaction energy are in good agreement with experimental values reported for those of Co, Ni and Cu elements, showing a repulsive interaction experimentally. On the other hand, the inter action energy for such elements as Ti, V, Cr and Mn is estimated to be a repulsive characteristics, although the attractive interac tion between them and a carbon atom is experimentally obtained. The cause for this contradiction is discussed based on a differ ent formation energy of carbide precipitation from the atomic pair interaction energy. (Received June 21, 2004; Accepted August 6, 2004) Keywords: first_ principles calculation, atomic pair interaction, precipitate, carbide, a_ Fe ZÉæÁÄCSðÜÞJÚà®Ìu·^s¨³fÔÌ 1. Í ¶ ß É ÝìpðvZ·éæègݪnÜèC¯ìçÉæÁĸÍI ɤªÈ³êÄ¢é3)ªCu·^³fÆNü^³fÆÌ |Ìu·^³fÆNü^³fÌÝìpÍC±êÜÅC ÝìpÉ¢ÄÍwDz×çêĢȢD±êÍC¯ìçÌ ZYãÌÅnYfZxªèâàC@žçêéX p¢Ä¢é Korringa_Kohn_Rostoker (KKR)@Í»_Å l[Ns[NÌðÍÉæÁIJ×çêÄ«½Dá¦ÎC Íå«Ècðº¤Nü^³fÌæèµ¢ª¢ïÅ é±ÆC ¼V1)ÍCZ^CgÌÅnxÆà³fZxÌÖW®ð ½ÊgîêÌ[|eV@ÅÍJÚà®ÈÇðÜÞnÌ p¢CÀ±Å¾çê½ C ZxÌà³f˶«©çu·^ vZɽåÈvZÔðvµÄ¢½±ÆCÈǪRÅ ³fÆNü^³fÌÝìpGlM[ðèµ½DܽC éDµ©µCÅßÅÍCJÚà®É¢Äà´\tg[|e Àqç2)ÍCu·^³fªüÁÄ¢éÆ«ÌÝϪ³êéX V4,5) ÉæÁÄvZÔðZk·é±ÆªÂ\ÉÈÁ l[Ns[NðCNü^³fÌu·^³fÌßTÅ̤ÂÆ Ä¢éD»±ÅCäXÍ_IÈ©n©çÀ±IÉÍ¢ï³ l¦C»ÌU®(·x)©çNü^³fÆu·^³fÌÝ ðº¤u·^³fÆNü^³fÌÝìpGlM[ðßC ìpGlM[ðèµ½Dµ©µC±êçÌÀ±Ìsm a_Fe ÅÌ´qÌ®Éηéðð[ßé±ÆðÚIÆ è«ð®SÉO·é±ÆÍ¢ïÅ èC´qÔÌÝìp µ½D GlM[É¢ÄÍ¢Ì]nªcÁÄ¢éDá¦ÎC¼ VÍ C Zxð©ÏàéèiƵÄàC@ðp¢Ä¢é ªCu·^³f̤¶ÉæÁÄXl[Ns[NÌ`óªP 2. u·^³fÆNü^³fÔÌÝìpGlM[ ÌvZû@ ÅÍÈÈèCC ZxðèÊIÉ]¿·é±ÆÍK¸µàe ÕÅÍÈC}NÈXü;çêÄà´qxÌæèµ æê´vZÍ´qÔÌÝÌüÍÅdqóÔð³mÉv ¢Ís\ªÅ é±ÆCܽCXl[Ns[NÌðÍɨ¢ Z·é±ÆÌÅ«éè@ÅC»ÌÅàvZÉv·éÔª ÄC÷Ês¨ð\ªÉµ½¿É¨¢ÄàC¿Ì ärIZåKÍvZÉü¢Ä¢éC½ÊgîêÌ[|e Ío¨ð®SɵC¡Ìu·^³fÆNü^³fÌ V@(Vienna Ab_initio Simulation Package6_9))ð{¤ ÝìpðO·é±ÆÍsÂ\Å èC½ÏIÈîñÉÈÁ ÅÍp¢½D[|eVƵĴ\tg[|eV ĵܤÉÛèª éD ðp¢C3d JÚளfÉ¢ÄÍ 3d, 4s óÔðCC É ßNC±Ìæ¤ÈÀ±Ìïµ¢ÎÛÉεÄCæê´v ¢ÄÍ 2s, 2p óÔð¿dqƵĵÁ½Dg®ÖÆd× 978 æ ú { à ® w ï (2004) § x Ì J b g I t G l M [ Í » ê ¼ ê 4.593 ~ 10|17 J 68 ª ßÚ©çæ 5 ßÚÌ Fe ´qÜÅÌ£ðLÚµ½D½¾µC J(550.0 eV)ƵÄvZµ½DÜ C ´qðÜÜÈ¢ Fe54 É¢ÄÍCzIȪÊÌÊu© ½CêÊ»ùzßɨ¯éð·ÖGlM[ÉÍC çÌæ 1 ßÚ©çæ 5 ßÚÜÅÌ Fe ´qÆ̣ŠéD (286.7 eV)Æ 8.812~10|17 Perdew çÉæÁÄñijêÄ¢é\®10,11)ðp¢½D ȨCC ´q(Fig. 1 ÌÅÍ X ÆLµ½)©ç©Äæ 1 ß u·^³fÆNü^³fÌÝìpGlM[ DE Í® Ú©çæ 5 ßÚÌ Fe ´qÌÊuð Fig. 1 ɦµ½DTable 1 ©çCC ´qªüé±ÆÉæÁÄæ 1 ßÚÌ Fe ´qÍ ðp¢Ä²×½D DEE[Fen|1MX]{E[Fen ]|E[FenX]|E[Fen|1M] ´¯çêéªCæ 2 ßÚÈÌ Fe ´qÆÌ£ÉÍwÇÏ ±±ÅCE ÍÊàÌPÊEÌSGlM[CM Íu· »ªÈ¢±Æªª©éDXÉC±ÌlqÍ n54 ÌêÆ n ^³fCX ÍNü^³fÅ éDn ÍvZÉp¢½PÊEÉ 250 ÌêÅwÇ·ªÈ¢D±êçÉæÁÄCn54 Èã ÜÜêéNü^³f𢽴qÌÅ éDÀÛÌvZÅ Å êÎ C ´qÉæéiqÉaª×Ú·éZÌ´qÌ ÍCüúI«Eððp¢ÄvZðsÁÄ¢é½ßCn ª¬ ÊuÉe¿ðyÚ·Â\«Íá¢Æ»fÅ«éDTable 2 ³·¬éÆ×Ú·éPÊEÉÜÜêéu·^³fâNü^³ ÍCu·^³fÆµÄ Ti ´qª Fe ´qÌ 1 ÂÆu·µ½ fÌÔÅÝìpª±ÆÆÈèCÝìpGlM[ð êÌ Ti ´qÌüÍÌ Fe ´qÌiqÉaÌlq𦵽 ³mÉ©Ïàé±ÆªÅ«È¢D»±ÅCPÊEÌ嫳ª àÌÅ éDu·^³fÉæéiqÉaÌlqð©éÌÉ n54(§û»ÌPÊE 3~3~3 Â)Æ n128(§û»ÌPÊ Ti ðIðµ½ÌÍCTi ©ç Cu ÜÅÌ 3d JÚளfÌ E 4~4~4 Â)Æ n250(§û»ÌPÊE 5~5~5 Â)Ì 3 ÅÍ Ti ªÅà´q¼aªå«¢³f¾©çÅ éDȨC ÂÌêÉ¢ÄCNü^³fÅ é C ´qª 1 ÂÜÜê Table 2 Ì Fe54 É¢ÄÍ Fe ´qÔ£ð¦µCTi ´ énÌvZðs¢CC ´qÌüÍÌiqÉaÉ¢IJ׽D q(Fig. 2 ÌÅÍ M ÆLµ½)©ç©Äæ 1 ßÚ©çæ 5 Table 1 ÉÍCC ´qªÜÜêĢȢnCn54 ÌPÊE ßÚÌ Fe ´qÌÊuÍ Fig. 2 ɦµ½DiFig. 2 ÉÍ M ´ É 1  C ´qªÜÜêÄ¢énCn128 ÌPÊEÉ 1  C q©ç©½æ 1 ßÚ©çæ 5 ßÚÜÅÌiqÔ´qÌÊu ´qªÜÜêÄ¢énCn250 ÌPÊEÉ 1  C ´qªÜ ঵½DjNü^³fÅ é C ´qÌêÉÍCæ 1 ßÚ ÜêÄ¢énCÌ 4 ÂÌêÉ¢ÄCC ´q©ç©½æ 1 Table 1 Distance (in nm) between C atom and Fe atoms locat ed at 1st to 5th nearest neighbor sites from C atom. Brillouin_ zone integrations have been performed on a grid of (a~b~c) k points. The a, b and c are written as abc in the 2nd row. Fe54 k_ mesh Fe54C 111 444 Fe128C 222 333 Fe250C 111 222 1st nn 0.143 0.175 0.177 0.178 0.178 0.178 0.178 2nd nn 0.202 0.198 0.198 0.198 0.198 0.199 0.198 3rd nn 0.320 0.321 0.321 0.321 0.321 0.322 0.322 4th nn 0.350 0.356 0.356 0.358 0.358 0.359 0.359 5th nn 0.429 0.428 0.428 0.428 0.428 0.429 0.429 Fig. 1 1st to 5th nearest neighbor Fe atom sites from intersti tial atom (X). Table 2 Distance (in nm) between Ti atom and Fe atoms lo cated at 1st to 5th nearest neighbor sites from Ti atom. Number of grid points for the Brillouin_ zone integrations are given as in Table 1. Fe54 k_mesh 1st nn 0.248 Fe53Ti Fe127Ti Fe249Ti 111 444 222 333 111 222 0.250 0.252 0.252 0.252 0.253 0.252 2nd nn 0.286 0.287 0.287 0.286 0.287 0.288 0.287 3rd nn 0.404 0.404 0.404 0.405 0.405 0.407 0.405 4th nn 0.474 0.474 0.474 0.474 0.475 0.476 0.475 5th nn 0.495 0.495 0.496 0.497 0.497 0.499 0.497 Fig. 2 1st to 5th nearest neighbor Fe atom sites (open circle) and 1st to 5th nearest neighbor interstitial sites (closed circle) from substitutional atom (M). æ 12 Fe Ìu·^³fÆNü^³fÌÝìp æê´vZÉæé a_ ÊuÌ Fe ´qªå«Éa·élqð Table 1 É©é±Æ 979 ´qâ Ti ´qÌüÍÌiqÉaÉÖ·éÀèCvZÉp¢ ªÅ«½ªCu·^³fÅ é Ti ´qÌêÉÍCæ 1 ß éPÊEÍ n54 Å\ªÅ éÆl¦çêéDܽCvZ ÚÊuÌ Fe ´qų¦CiqÉaÍÍ©Å é±Æªª© ÍæêuA][Ì¡Ìtiq_É¢Äs¢C éDXÉCu·^³fÌ Ti ´q 1 ÂÆNü^³fÌ C ´q vZ³ê½SÄÌtiq_ÅÌg®Öðp¢ÄCdq§x 1 ÂðPÊEÉüê½Ì¼´qÔÌ£ð Table 3 ɦµ ªzâSGlM[ð¾é±ÆªÅ«éDTable 1`3 ɦ ½D±Ì\Ìæ n ßÚÍCC ´q©çæ n ßÚÉ é Fe ´ µ½ÊÍCPÊEÌ嫳˶«¾¯ÅÈCtiq_Ì qÌ 1 Âð Ti ´qÆu·µ½±ÆðÓ¡µÄ¢éD±Ìv Éηé˶«É¢Äà²×½àÌÅ èCC ´qÆ ZÊàCTi ´qÆ C ´qÔÌ£ªPÊEÌ嫳Éw Ti ´qÌüèÌiqÉaÍtiq_ÌÉàwÇ˶µÈ Ç˶µÈ¢±Æð¦µÄ¢éD±êçÌvZÊ©çCC ¢±Æªª©éD ÉCPÊEÌ嫳˶«Ætiq_˶«É¢ Table 3 Distance (in nm) between C atom and Ti atoms locat ed at 1st to 5th nearest neighbor sites from C atom. Number of grid points for the Brillouin_zone integrations are given as in Table 1. Fe54 k_ mesh 1st nn 0.143 Fe53TiC Fe127TiC Fe249TiC ÄCiqcÌÉa¾¯ÅÈC¥CIÈÝìpâ±Ì¤ ÌÅÅàdvÈÝìpGlM[É¢IJ׽DFig. 3 ÉÍ Ti ´qÆ C ´qÌ¥C[gÌPÊEÌ嫳 ˶«Ætiq_˶«ð¦µ½DȨCTi ´qÆ C ´ qÌÊuÖWÉ¢ÄÍCFig. 1 ɦµ½æ 1 ßÚ©çæ 5 111 444 222 333 111 222 ßÚÌêÉ¢IJ×C»êÉÁ¦ÄCTi ´qÌÝC½ 0.196 0.196 0.198 0.198 0.200 0.199 ¢Í C ´qÌݪ a_Fe É éêÉ¢IJ׽DFig. 3 ©çª©éæ¤ÉCTi ´qÌ¥C[gÉ¢ÄÍ 2nd nn 0.202 0.217 0.217 0.218 0.218 0.219 0.218 3rd nn 0.320 0.318 0.319 0.319 0.319 0.319 0.319 n54, k1~1~1 Æ n128, k2~2~2 ÌÊðCC ´q 4th nn 0.350 0.354 0.356 0.358 0.358 0.359 0.359 É¢ÄÍ n54, k1~1~1 Æ n250, k1~1~1 Ì 5th nn 0.429 0.431 0.431 0.431 0.431 0.432 0.432 Êð¢Äwǯ¶lð¦·DXÉCæ 1 ßÚ©çæ 5 ß ÚÖÆ Ti ´qÆ C ´qÌ£ª£êéÉÂêÄCTi ´q Æ C ´qÌ¥C[gÍCTi ´qÌÝCC ´qÌݪ a_Fe É éÆ«ÌlÉßâĢ«Cæ 5 ßÚÅÍwÇ ¯¶ÉÈÁÄ¢é±Æªª©éD±Ì±ÆÍCæ 5 ßÚÅ Í Ti ´qÆ C ´qÌ¥CIÝìpªñíɬ³¢±Æ𠦵ĢéDiqÉaÉ¢ÄÍCSÄÌvZÊÅLÓÆ l¦çêéë·Í¶¶È©Á½ªC¥C[gÉ墀 ÍÁÉtiq_ªÈ¢êÉë·ªå«Èé±Æªª© Á½D±êÍCtiq_ªÈ¢êÉÍÁÙÈtiq_Ì Ýªp¢çêC»ê窼ÚIÉe¿·é¥C[gÅ Íå«Èë·ð¶¶CÔÚIÉe¿·éiqÉaÉ¢ÄÍ ë·ªÚ§½È¢ÆðßÅ«éDSGlM[É¢ÄÍ¥ Fig. 3 Magnetic moment of (a) Ti atom and (b) C atom for different unit cell sizes and number of grid points for the Brillouin_zone integrations. Magnetic moments of C atom for n 128, k2~2~2 are the same as those for n128, k3~3~ 3. Fig. 4 Interaction energy between Ti atom and C atom for different unit cell sizes and number of grid points for the Brillouin_ zone integrations. 980 ú { à ® w ï (2004) æ 68 ª C[gÉä×Äoh\¢Ìe¿ªÔÚIÅ èC4 GlM[ª³fÉæÁÄå«Ï»µC³fÉæÁÄÍñ ÂÌnÌSGlM[©çvZ³êéÝìpGlM[à íÉå«È³ÌÝìpGlM[(ËÍÝìp)ð^¦ ¥C[gÉä×êÎÔÚIÉtiq_ÌIðÌe¿ð éDêûCæ 3 ßÚÈÌêÉͳfÉæéá¢Íå« ó¯éÆl¦çêéDFig. 4 ÉÍCu·^³fÆNü^³f ÈCµ©àC»ÌlÍ 0.3~10|19 J ȺƬ³¢D ÌÝìpGlM[É¢ÄCPÊEÌ嫳˶«Æt ÜèCu·^³fªßTɶݷé C ´qÉå«e¿ð iq_˶«ð²×½Ê𦵽D½¾µCu·^³f yÚ·ÌÍæ 2 ßÚÜÅÅ èC»êÈÍÍ©Å éÆ ÆNü^³fÌÊuÖWÉ¢ÄÍCFig. 1 ɦµ½æ 1 ß l¦çêéD Ú©çæ 5 ßÚÌêðÎÛƵ½DÝìpGlM[ ÝìpGlM[̳f˶«ª½ÉNö·é©ð²× ÍCn54 Å k1~1~1 ÌvZÊð¢ÄSÄÌvZ é½ßÉCu·^³fÆNü^³fÌÔÌ£ð²×½Ìª ʪwÇdÈÁĨèCn54 Å k4~4~4 ÌvZÊÆ Fig. 6 Å éD±Ì}ÅÍCu·^³f M ´qÆ C ´qÆ ÅàPÊEÌå«¢ n250 Å k2~2~2 ÌvZÊÆÌ Ì£(M_C)Ì M ´qªÈ¢Æ«Ì Fe ´qÆ C ´qÆÌ J ȺŠé±Æªª©Á½DȨCã £(Fe_C)©ç̸êðp[ZgÅ\¦µ½DFig. 6 Æ qÌSÄÌêɨ¢ÄCiqèƵÄÍÀ±Å¾çêÄ Fig. 5 ðär·éÆCæ 1 ßÚÌêÉC(M_C)Ì£Æ ¢él 0.286 nm ðp¢½D½¾µCFe54 É墀 k4~4 ÝìpGlM[ÉÖª éæ¤É©¦éDXÉCæ 1 ~4 ÌvZÅÅK»³ê½iqèÌlÍ 0.285 nm Å ßÚÌ(M_C)Ì£ÍCu·^³fÌ´q¼aƯ¶Xü èCvZë·Í\ªÉ 1÷ȺŠé±ÆðmFµ½DXÉC ðÂDàµCSÉu·³ê½ 3d JÚபCüèÌ ë·ª 0.2~10|19 n54, k4~4~4 ÌêÉCFe54, Fe54C, Fe53Ti, Fe53TiC Fe ´qƤLIÈðÔÆ·êÎCdqÈÇÉ (æ 1 ßÚ©çæ 5 ßÚÌSÄ)É¢ÄiqèðÅK» ¶½}ÈÏ»ª\z³êéªCu·^³fªà®IÈó µCÝìpGlM[ÌÏ»ð²×½ÊCÝìpGl M[Ìë·Íæ 1 ßÚ©çæ 5 ßÚÜÅÌ¢¸êÉ¢ Äà 0.2~10|19 J ȺŠÁ½DÅK»ÉæéiqèÌ Ï»ÍCPÊEª n128 â n250 Å éêÉä×ÄC s¨ZxÌÅࢠn54 ÌêÉÅåÅ é½ßCn 128 Æ n250 ÌêðÜßÄCiqèÌÅK»Éæé ÝìpGlM[Ìë·Í 0.2~10|19 J ȺŠéÆl¦ çêéD 3. u·^³fÆNü^³fÔÌÝìpGlM[ ãqµ½æ¤ÉCÝìpGlM[Í n54 ÌPÊE Å k4~4~4 Ìtiq_bV ðp¢ÄvZ·êÎ\ª ÈvZ¸xª¾çêé±Æªª©Á½D»±ÅC±ÌvZð ̺Š3d JÚளfÆ C ´qÌÝìpGlM[ð ß½(Fig. 5)D}©çª©éæ¤ÉCu·^³fÆNü^ Fig. 6 Normalized distance between substitutional 3d transi tion metal atom and interstitial C atom. ³fÌÊuÖWªæ 1 ßÚCæ 2 ßÚÌêÉÍÝìp Fig. 5 Interaction energy between substitutional 3d transition metal atom and interstitial C atom. Fig. 7 Magnetic moment of Fe atom located at 1st to 5th nearest neighbor sites from the substitutional 3d transition metal atom. æ 12 Fe Ìu·^³fÆNü^³fÌÝìp æê´vZÉæé a_ ÔðÛÁÄ¢é½ßÉCu·^³fÆ C ´qÌÝìpG 981 »µÄ¢éDÂÜèCÝìpGlM[̳f˶«ð lM[ªu·^³fÌ´q¼aƯ¶XüðÁÄ¢éÆ ð·é½ßÉÍC¥CIÈÝìpÉ¢Äàl¶·é±Æ l¦çêéDµ©µCC ´q©ç©Äæ 2 ßÚÉ éu·^ ªdvÅ éƦ´³êéD ³fÆ C ´qÆ̣ɢÄÍCÝìpGlM[Æ ÌÔÉÖª éæ¤ÉÍ©¦È¢D À±IɾçêÄ¢éÝìpGlM[ðCu·^³f ÆNü^³fÌÊuÖWÌlɪ£·é±ÆÍ¢ïÈÌ XÉCÝìpGlM[̳f˶«ðð·é½ß ÅCvZ³ê½æ 1 ßÚ©çæ 5 ßÚÜÅÌÝìpGl ÉCu·^³fÌüèÌ Fe ´qÌ¥C[gÉ墀 M[ð½Ï·é±ÆÅCÀ±ÊÆvZÊðär·é± à²×½DFig. 7 ɦµ½ÌÍCa_Fe Ì Fe ´qÌ 1  Æðl¦½D½ÏÉÛµÄÍCPÉÝìpGlM[Ì ðu·^³f M Åu·µ½ÌCM ´q©ç©½æ 1 ßÚ lð½Ï·éÌÅÍÈCÝìpGlM[Ìá¢Æ±ë ©çæ 5 ßÚÜÅÌ Fe ´qÌ¥C[gÅ éD±Ì ÙÇ´q̶Ým¦ªCÀ±IÉÏ@³êélÉß¢Í lÍCn54, k4~4~4 ÅÌvZÊ©çß½àÌÅ ¸ÈÌÅCÝìpGlM[É{c}öqð|¯Ä½ éDêûCªÊÌÊuɶݷé C ´qÌ¥C[g ϵ½DïÌIÉͺ®ðp¢½ªCei Íæ i ßÚÌÝì ÍC»ÌÅßÚÌ 2 ÂÌ Fe ´qÌe¿ðó¯éÆl¦ pGlM[Å èCzi Íæ i ßÚÌzÊÅ éDܽC çêéDM ´qÆÌÊuÖWªæ 1 ßÚ©çæ 5 ßÚÅ C Ƶ½D ·x T Í 0 é C ´qªCM ´q©ç©ÄÇÌÊuÉ é Fe ´qɲ ÜêÄ¢é©ð¦µ½ÌªCTable 4 Å é(Fig. 2 QÆ)D »±ÅCFig. 7 ðp¢ÄCTable 4 ɦµ½æ 2 ßÚ©çæ 5 ßÚÜÅÌ C ´qð²ñÅ¢é 2 ÂÌ Fe ´qÌ¥C[ 5 ei zi exp {|ei/kBT } i1 5 zi exp {|ei/kBT } i1 g̽Ïlð߽̪ Fig. 8 Å éDu·^³fÉ vZÊð Fig. 9 ɦ·ªCCo, Ni, Cu ÌÝìpGl æéæ 2 ßÚ©çæ 5 ßÚÜÅÌ¥C[gÌÏ» M[ͼVÌñ1)ÆÇêvµÄ¢éDêûCTi, V, Cr, ÍCÝìpGlM[Ìu·^³f˶«ðärIÇÄ Mn É¢ÄÍCÀ±IÉÍ¢øÍÝìpª éÆñ ³êÄ¢éÌÉεÄCvZÊÍã¢ËÍÝìpÅ é Table 4 Position of C atom from the substituional 3d transition metal atom is shown in the first column. There are two Fe atoms next to the C atom, since the C atoms are located at the octa hedral site. In the 2nd and 3rd column position of the two Fe atoms from the substitutional 3d transition metal atom is given. C Fe 1 M 2 2 1 1 3 2 3 4 1 4 5 3 5 ±Æð¦µÄ¢éDÂÜèCÀ±IÉøÍÝìpÅ éÆ ³êÄ¢éêÉCvZʪÀ±ÊƵµÄ¢éæ¤ É©¦éD±Ì±ÆÍCøÍÝìpª éêÉCvZã l¶µÄ¢È¢±ÆªN±ÁÄ¢éƦ´µÄ¢éÆàl¦ çêéDá¦ÎC¡ÂÌu·^³fÆNü^³fÔÌÝ ìpÉæÁÄCÉ÷¬NX^ª¶¬µÄ¢éÂ\«ªl¦ çêéD¡ÂÌ´qÔ¯mÌÝìpÉ¢ÄÍCêÌ ª½C»_ÌvZ@\ÍÅÍÀçê½ÍÍ̱Ƶ© Å«È¢½ßsÁĢȢªC¡ãæègÞ׫ÛèÅ é Æl¦Ä¢éD»Ì¼ÌÂ\«ÆµÄÍCøÍÝìpª éêÉÍu·^³fªóEðºÁĨèCÊƵÄu· ^³fªóEðîµÄNü^³fÆÝìp·é±ÆÅ Fig. 8 Averaged magnetic moment of Fe atom located at 1st nearest neighbor sites from C atom. Substitutional 3d transition metal atom is located at 2nd and 5th nearest neighbor sites from C atom. Fig. 9 Interaction energies between substitutional 3d transi tion metal atom and interstitial C atom are averaged for 1st to 5th nearest neighbors. 982 ú { à ® w ï (2004) æ 68 ª éD±ÌêÉÍCóEʪTvÌì»vZXÉ Ë¶·é±ÆâC1 ÂÌóEÉ¡ÂÌNü^³fªß¨³ êéÂ\«ª é12) ±Æ©çCàCªèÉæÁÄ¡ ÌÝìpGlM[ªÏª³êé±Æªª³êéD 4. |ɨ¯éY»¨ÌÀè« OßÅÍCÀ±IÉu·^³fÆNü^³fÌÔÉøÍI Ýìpª éêÉCÀ±ÆvZɵª é±Æ𦵠½DêûC|ÅÌY»¨ÌÀè«É¢ÄàCÀ±IÉÚ µ²×çêÄ¢éD»±ÅCvZè@Ìm©çµ³ðmF µC´qÔÝìpÆY»¨ÌÀè«É¢Äc_·é½ ßC|ÅÌY»¨ÌÀè«É¢IJ׽DvZû@Ƶ ÄÍC|ɶݷé C ´qÆu·^³f M ©çCu·^ Fig. 10 Formation energy and lattice constant of 3d transition metal carbides. ³fÌY»¨ MC ª¶¬·éÛÌGlM[Ï»ðº®Å ß½D DEE[Fe107 ]{E[MC(NaCl ^)]|E[Fe54C] |E[Fe53M] ÆJÚளfÆYfÆÌÝìpGlM[ÍC1 Î 1 É ½¾µCYf´q C Æu·^³f M ÌA_[CÍC ηéÆl¦çêÄ«½D¡ñ̤ɨ¢ÄàCÀ±I C ´qÆ M ´qª|ÉÅnµÄ¢éóÔÅ é±Æð¦ ÉËÍIÈÝìp𦷠Co, Ni, Cu É¢ÄÍCÀ±l µÄ¢éDܽCY»¨ MC ÆµÄ NaCl ^ÉÈé 3d JÚ ÉߢÝìpGlM[ðæê´vZÉæÁľé±Æ ளf M Í Ti Æ V ÌÝÅ éªCvZªeÕÅ é± ªÅ«½Dµ©µCÀ±IÉøÍÝìpð¦·nÅÍCv ÆâCY»¨ÌÀè«Ì 3d JÚளf˶«ðnIÉ ZÆÀ±ªµµ½Êð¦µÄ¢éDl¦çêéRƵ ©é½ßÆ¢¤RÅCY»¨ÍSÄ NaCl ^ƵÄvZð P ¡ÂÌu·^³fâNü^³fªÝìpµ½ ÄÍCü sÁ½D½¾µCTi Æ V ÈOÌ 3d JÚளfÍ NaCl ^ Q u·^³fªóEðîµÄNü^³fÆÝ ÊCܽÍCü ÌY»¨ðìçÈ¢½ßCiqèÍ¢mÅ éD»±ÅC ìpµ½ÊCÀ±IÉøÍÝìpª¾çê½Â\«ª iqèÉ¢ÄÍCSÄÉ¢ÄvZãÅK»³ê½lð éDêûÅCY»¨ÌÀè«É¢ÄÍCÀ±ÊÆvZ p¢½DTiC É¢ÄCvZÅÅK»³ê½iqèÆÀ± ÊÍè«IÉæÁÄ¢éD»±ÅCa_Fe ÅeÕÉY ÅßçêÄ¢éiqèÆÌë·Í 0.2÷ȺŠèC± »¨ªÍo·éJÚளfÆ C ´qÌg¹Å ÁÄ ÌAv[`ªÃÅ é±Æð¦µÄ¢éDvZÊÍ àCPêÌ´qÔÌÝìpÍËÍIÅ èCÍo¨C Fig. 10 ɦµ½D±Ì}ÍCTiC Æ VC É¢ÄÍY»¨ éöxÌ嫳ÉÈÁÄßÄÀèµ½Y»¨ÉÈéÆl¦ ̶¬GlM[ªÅ èCC ´qÍ Ti ´qâ V ´qÆ Äæ¢Ì©àµêÈ¢D¡ãC3 ³Agv[uÈÇC ¤ÉÅnµÄ¢éæèÍCY»¨ÆµÄÍoµ½ûªÀèÅ ´qxóÔÌ»éV½ÈÀ±è@Éæé¢àKvÅ é±Æð¦µÄ¢éD½¾µC±ÌvZÌÅÍC|ÆY ë¤D »¨ÆÌEÊGlM[Íl¶³êĢȢD»Ì½ßCE ÊGlM[̹ƶ¬GlM[̾ª¯¶I[_[ÉÈ ¶ £ è¾éÉ÷¬ÌÍo¨ÌÀè«É¢ÄÍc_Å«È¢Dµ ©µC±Ìâèªñð³êéå«ÈÍo¨É¢ÄÍC| Å̶¬ªmçêÄ¢é TiC Æ VC ÍvZãàÀèÅ é ±Æª¦³ê½DܽC|ÅͶ¬³êÈ¢ Co, Ni, Cu ÌY»¨ªvZãÅàsÀèÅ é±ÆàCÀ±ÀƵ µÈ¢D±êçÍC±êÜÅÉq×Ä«½vZè@ÆvZ ÊÌëð¦·àÌÅ èC¯ÉY»¨Ì¶¬Æ 1 Î Ì´qÔÝìpÆÍæʵÄl¦éKvª é±Æ𦴠µÄ¢éD 5. Ü Æ ß ±êÜÅC|ɨ¯éJÚà®Y»¨Ì¶¬Ìµâ·³ 1) T. Nishizawa: Bull. Inst. Metals 12(1973) 401. 2) H. Numakura, G. Yotsui and M. Koiwa: Acta Metall. Mater. 43(1995) 705. 3) T. Hoshino, M. Asato and T. Mizuno: Meeting Abstracts of the Physical Society of Japan, vol. 55, issue. 2 (2000) p. 853. 4) D. Vanderbilt: Phys. Rev. B41(1990) 7892. 5) K. Laasonen, A. Pasquarello, R. Car, C. Lee and D. Vanderbilt: Phys. Rev. B47(1993) 10142. 6) G. Kresse and J. Hafner: Phys. Rev. B47(1993) 558. 7) G. Kresse and J. Hafner: Phys. Rev. B49(1994) 14251. 8) G. Kresse and J. Furthmuller: Comput. Mat. Sci. 6(1996) 15. 9) G. Kresse and J. Furthmuller: Phys. Rev. B54(1996) 11169. 10) J. P. Perdew and Y. Wang: Phys. Rev. B45(1992) 13244. 11) J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Smith and C. Fiolhais: Phys. Rev. B46(1992) 6671. 12) T. Ohnuma and N. Soneda: Meeting Abstracts of the Physical Society of Japan, vol. 55, issue. 1 (2000) p. 868.
© Copyright 2025 ExpyDoc