6. Heteroskedasticity (Violation of Assumption #B2) Assumption #B2: • Error term ui has constant variance for i = 1, . . . , N , i.e. Var(ui) = σ 2 Terminology: • Homoskedasticity: constant variances of the ui • Heteroskedasticity: non-constant variances of the ui 100 Typical situations of heteroskedasticity: • Cross-section data sets covering household and regional data • Data with measurement errors following a trend • Financial market data (exchange-rate, asset-price returns) Example: [I] • Rents for (business) real-estate in distinct town quarters 101 Example: [II] • Variables: yi = rent for real-estate in quarter i (EUR/m2) xi = distance to city center (in km) • Single-regressor model: yi = α + β · xi + ui, RENT 16.8 16.2 15.9 15.4 16.4 13.2 12.8 12.2 15.0 13.6 14.1 13.3 i = 1, . . . , 12 DISTANCE 05 14 11 22 13 32 31 44 37 30 35 41 102 17 16 Rent 15 14 13 12 0 1 2 3 4 5 Distance Dependent Variable: RENT Method: Least Squares Date: 11/06/04 Time: 14:25 Sample: 1 12 Included observations: 12 Variable Coefficient Std. Error t-Statistic Prob. C DISTANCE 17.39303 -1.073535 0.527137 0.181780 32.99528 -5.905673 0.0000 0.0001 R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat 0.777169 0.754885 0.775981 6.021462 -12.88980 2.183344 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic) 14.57500 1.567352 2.481634 2.562452 34.87697 0.000150 Example: [III] • Residual variation increases with the regressor −→ indication of heteroskedasticity 2 Residuals 1 0 -1 -2 0 1 2 3 4 5 Distance 104 Issues: • Consequences of heteroskedasticity • Diagnostics (Tests for heteroskedasticity) • Estimation and hypothesis-testing in the presence of heteroskedasticity (weighted OLS estimation, Aitken-estimator) 105 6.1 Consequences Homoskedasticity vs. heteroskedasticity: [I] • Consider the linear regression model y = Xβ + u • Homoskedasticity means that 2 Cov(u) = σ IN = (validity of Assumption #B3) σ2 0 ... 0 0 σ2 ... 0 ··· 0 ··· 0 · · · ... · · · σ2 106 Homoskedasticity vs. heteroskedasticity: [II] • Heteroskedasticity means that σ12 0 · · · 0 σ2 · · · Cov(u) = ...2 · · · ... 0 where Ω 0 0 0 ... 2 · · · σN σ12/σ 2 0 ··· 2/σ 2 · · · 0 σ 2 = .. ... . ··· 0 0 ≡ σ 2Ω 0 0 ... 2 /σ 2 · · · σN 107 Example: • For the real-estate data set we could assume σi2 = σ 2xi, that is Ω= x1 0 0 x2 ... ... 0 0 ··· 0 ··· 0 · · · ... · · · xN −→ Ω can be determined directly from the data 108 Now: • Central result (proof and derivations are given below) Theorem 6.1: (Consequences of heteroskedasticity) In the presence of heteroskedasticity the OLS estimator b = (X0X)−1X0y β b is no longer BLUE, is unbiased. However, the OLS estimator β i.e., there is another linear and unbiased estimator of β with a ”smaller” covariance matrix. 109 Proof of unbiasedness: • We have b = (X0X)−1X0y β = (X0X)−1X0 (Xβ + u) = β + (X0X)−1X0u • It follows that b = β + (X0X)−1X0E (u) E β b =β • From Assumption #B1 we have E (u) = 0N ×1 and E β (Assumption #B2 is not needed) 110 Now: • Construction of a linear estimator of β that, in the presence of heteroskedasticity, is (1) unbiased and (2) more efficient b = (X0X)−1X0y than the OLS estimator β Procedure: [I] • We transform the heteroskedastic model y = Xβ + u such that the parameter vector β remaines unchanged heteroskedasticity vanishes the transformed model y∗ = X∗β + u∗ satisfies all #A-, #B-, #C-assumptions 111 Procedure: [II] • New estimator of β : OLS estimator of the transformed model h i GLS 0 ∗ −1 ∗ 0 ∗ ∗ b = X X β X y Example: [I] • Consider the single-regressor model where yi = α + β · xi + ui (i = 1, . . . , N ) Var(ui) = σi2 = σ 2xi (cf. our real-estate example) 112 Example: [II] • Transformation: • Define α xi ui yi √ = √ +β·√ +√ xi xi xi xi yi ∗ yi ≡ √ , xi 1 ∗ zi ≡ √ , xi xi ∗ xi ≡ √ , xi ui ∗ ui ≡ √ xi −→ transformed model: yi∗ = α · zi∗ + β · x∗i + ui∗ (multiple regression without intercept) 113 Example: [III] • We have E(u∗i ) = Var(u∗i ) = 1 √ E(ui) = 0 xi 1 √ xi !2 Var(ui) = 1 2 σ xi = σ 2 xi −→ model is homoskedastic 114 Summary: • Transformed model is homoskedastic • Transformed model satisfies all #A-, #B-, #C-assumptions • yi∗, zi∗, xi∗ can be obtained from the original (xi, yi)-values −→ OLS estimator of the transformed model is obtainable 115 Generalization: [I] • Consider the heteroskedastic model y = Xβ + u where (cf. Slide 107) i 0 Cov(u) = E uu = σ 2Ω h • All elements of the diagonal matrix Ω σ12/σ 2 ··· 0 σ22/σ 2 · · · 0 = ... ... ··· 0 are positive 0 0 0 ... 2 /σ 2 · · · σN 116 Generalization: [II] −→ Ω is a positively definite matrix −→ there is at least one regular (N × N ) matrix P such that P0P = Ω−1 (vgl. Econometrics I, Slide 49) 117 Generalization: [III] • We transform the heteroskedastic model y = Xβ + u via the matrix P into Py = PXβ + Pu • Using the notation y∗ ≡ Py, X∗ ≡ PX, u∗ ≡ Pu, we obtain y ∗ = X∗ β + u ∗ 118 Generalization: [IV] • For the vector u∗ of the transformed model we have E u∗ = E (Pu) = PE (u) = 0N ×1 n o ∗ 0 = E [Pu − E(Pu)] [Pu − E(Pu)] Cov u h i 0 0 = E Puu P ) h i 0 = PE uu P0 = σ 2PΩP0 = σ 2IN −→ transformed model is homoskedastic 119 Remark: • The validity of PΩP0 = IN follows from the equation P0P = Ω−1 after left-hand and right-hand-side multiplication with PΩ and P−1: PΩP0PP−1 = PΩΩ−1P−1 120 Summary: • There always exists a transformation matrix P that transforms the heteroskedastic model y = Xβ + u with Cov(u) = σ 2Ω into the homoskedastic model y∗ = X∗β + u∗ with Cov(u∗) = σ 2IN • The homoskedastic model satisfies all #A-, #B-, #C-assumptions • β remains unaffected by the transformation 121 Now: • Potential estimator of β : (cf. Slide 112) OLS estimator of the transformed model b GLS β = = = = h i 0 ∗ −1 ∗ 0 ∗ ∗ X X X y i−1 0 (PX)0Py (PX) PX h h i−1 0 0 X P PX X0P0Py h i−1 −1 0 X0Ω−1y XΩ X 122 Definition 6.2: (Generalized Least Squares estimator) The OLS estimator of β obtained from the transformed homoskedastic model b GLS β i−1 0 −1 X0Ω−1y = XΩ X h is called the Generalized Least Squares (GLS) estimator (also: Aitken-estimator). Theorem 6.3: (Properties of the GLS estimator) The GLS estimator h i−1 GLS 0 −1 b β = XΩ X X0Ω−1y is linear and unbiased. Its covariance matrix is given by b GLS Cov β (Proof: see class) h i−1 2 0 −1 =σ XΩ X . 123 Remark: • Under homoskedasticity it follows that Ω = IN and thus b GLS = β = = h i−1 0 −1 X0Ω−1y XΩ X i−1 0 X0 I N y X IN X h h i−1 0 XX X0y b = β (GLS and OLS estimators coincide) 124 Obviously: • Both, the GLS estimator h i−1 GLS 0 −1 b = XΩ X X0Ω−1y β and the OLS estimator i−1 h 0 b X0 y β= XX are linear and unbiased estimators Question: • Which estimator is more efficient? 125 Answer: • The transformed model y∗ = X∗β + u∗ satisfies all #A-, #B-, #C-assumptions −→ The GLS estimator h i−1 GLS 0 −1 b β = XΩ X X0Ω−1y is BLUE of β (Gauß-Markov-Theorem) −→ The OLS estimator cannot be efficient h i−1 0 b β= XX X0y 126 Question: • What are the consequences of erroneously using the OLS estimator and its associated formulae for the standard errors in the presence of heteroskedasticity? Answer: b ) under heteroskedasticity (the true situa• We compare Cov(β b ) as computed under homoskedasticity (the tion) with Cov(β untrue situation) 127 Comparison: [I] • Under heteroskedasticity we have h i0 i h b −E β b b b b −E β = E β β Cov β = E = E = E = h ih b −β β b −β β ( −1 X0 X −1 X0 X X0 u i0 X0X −1 X0uu0X X0X 0) X0 u −1 −1 −1 h i 0 0 0 0 XX X E uu X X X −1 −1 0 0 0 2 = σ XX X ΩX X X 128 Comparison: [II] • If we neglect heteroskedasticity we have −1 2 0 b Cov β = σ X X Similarly, in the estimation of σ 2 we have: • Under heteroskedasticity: σ ˆ2 = b b 0 Pu b∗ b ∗0u (Pu) u = N −K−1 N −K−1 • Under the neglection of heteroskedasticity: b 0u b u 2 σ ˆ = N −K−1 129 Summary: • Under the neglection of heteroskedasticity, estimation of β ˆ = X0X −1 X0y is unbiased, but invia the OLS estimator β efficient • Under the neglection of heteroskedasticity, the ordinary estimators of b) the covariance matrix Cov(β the variance σ 2 of the error term are biased −→ statistics of t- and F -tests are based on biased estimators −→ t- and F -tests are very likely to be misleading 130 6.2 Diagnostics Now: • Statistical tests for heteroskedasticity Basic structure of all tests: • H0: Homoskedasticity vs. H1: Heteroskedasticity 131 Consequence: • Non-rejection of H0 −→ OLS results are ”unsuspicious” • Rejection of H0 −→ problematic OLS results (cf. Section 6.1) −→ application of alternative estimation procedures (cf. Section 6.3) 132 Problem of all tests: • Tests are based on different patterns of heteroskedasticity (e.g. σi2 = σ 2xki, σi2 = σ 2x2 ki etc.) −→ alternative tests for heteroskedasticity 1. The Goldfeld-Quandt test (special case) Assumed pattern of heteroskedasticity: • Variances of the ui are split into two groups: 2 σi2 = σA 2 σi2 = σB for all i belonging to group A (i ∈ A) for all i belonging to group B (i ∈ B) 133 Hypothesis test: 2 = σ2 • H0 : σA B versus 2 = 2 6 σB H1 : σA Test statistic: [I] • Notation NA is the number of observations in group A NB is the number of observations in group B P A ˆi2 is the sum of squared residuals in group A Suˆuˆ = i∈A u P B Suˆuˆ = i∈B u ˆ2 i is the sum of squared residuals in group B 134 Test statistic: [II] • Under the Assumption #B4 it follows that 1 2 SuˆAuˆ/σA NA − K − 1 ∼ FNA−K−1,NB −K−1 1 2 SuˆBuˆ/σB NB − K − 1 2 = σ 2 we have • Under H0 : σA B T = SuˆAuˆ/(NA − K − 1) SuˆBuˆ/(NB − K − 1) ∼ FNA−K−1,NB −K−1 −→ Reject H0 at the significance level α if T ∈ [0, FNA−K−1,NB −K−1;α/2]∪[FNA−K−1,NB −K−1;1−α/2, +∞] 135 Remarks: [I] • We can also test the one-sided alternative 2 > σ2 H1 : σA B via the statistic T • The critical region of this test at the α-level is given by [FNA−K−1,NB −K−1;1−α, +∞] • We test the reverse alternative 2 < σ2 H1 : σA B by interchanging the role of the groups A and B 136 Remarks: [II] • The general Goldfeld-Quandt test can be used to test wether the σi2-values depend in a monotone way on a single exogenous variable xki (cf. Gujarati, 2003) 137 2. The Breusch-Pagan test Assumed pattern of heteroskedasticity: [I] • Consider J ≤ K exogenous variables z1, . . . , zJ and J coefficients α1, . . . , αJ • For i = 1, . . . , N consider the transformation h(α1 · z1i + α2 · z2i + . . . + αJ · zJi) with h : R → R+ satisfying the following properties: h is continuously differentiable h(0) = 1 138 Assumed pattern of heteroskedasticity: [II] • We assume that the variances of the ui are given by σi2 = σ 2 · h(α1 · z1i + α2 · z2i + . . . + αJ · zJi) Example: • For h : R → R+ mit h(x) = exp(x) we have σi2 = σ 2 · exp(α1 · z1i + α2 · z2i + . . . + αJ · zJi) (multiplicative heteroskedasticity) 139 Heteroskedasticity test: • Defining α ≡ [α1 . . . αJ ]0, the testing problem is H0 : α = 0J×1 versus H1 : α = 6 0J×1 Test statistic: [I] • There is a test that does not depend on the function h (Breusch-Pagan test) 140 Test statistic: [II] • Derivation (in its simplest form): Estimate the model y = Xβ + u by OLS Compute the residuals b b =y−u b = y − Xβ u Estimate the model ∗ ˆ2 (i = 1, . . . , N ) u i = α0 + α1 · z1i + . . . + αJ · zJi + ui and find the coefficient of determination R2 141 Test statistic: [III] −→ Test statistic: T = N R2 We have T ∼ asmp. χ2 J (chisquare distribution with J degrees-of-freedom) • Under H0 : α = 0J×1 the impact of z1, . . . , zJ on u ˆ2 i should be equal to zero −→ decision rule: Reject H0 at the α-level if 2 T = N R2 > χJ;1−α 142 Remark: • The Breusch-Pagan test is a Lagrange-Multiplier test (cf. the lecture ’Advanced Statistics’) 143 3. The White test Special feature of previous tests: • Explicit structural form of heteroskedasticity White test: • Allows for entirely unknown patterns of heteroskedasticity • Best-known heteroskedasticity test • Theoretical foundation: Eicker (1967) White (1980) 144 Preliminaries: [I] • Covariance matrix of OLS estimator under heteroskedasticity −1 −1 0 0 2 0 b X ΩX X X Cov β = σ X X (cf. Slide 128) • Question: b without any strucCan we consistently estimate Cov β tural assumption on the σi2? (i.e. in the presence of heteroskedasticity of unknown form) • Answer: Yes, see White (1980) 145 Preliminaries: [II] • Consider the following partitioning of the X matrix: where X= 1 x11 x21 1 x12 x22 ... ... ... 1 x1N x2N xi0 = h · · · xK1 · · · xK2 ... ··· · · · xKN 0 x1 x0 = ..2 . x0N 1 x1i x2i · · · xKi i • Estimate the model y = Xβ + u by OLS 146 Preliminaries: [III] • Compute the residuals b b = y − Xβ b =y−y u b under heteroskedasticity • A consistent estimator of Cov β of unknown form is given by N −1 X −1 0 0 2 0 b = XX d β Cov u ˆi xixi X X i=1 147 Definition 6.4: (Heteroskedasticity-robust standard errors) The standard errors of the OLS estimators −1 0 b β= XX X0y, which are given by the square root of the diagonal elements of the estimated covariance matrix N −1 X −1 0 2 0 0 b d β = XX Cov ˆi xixi X X u , i=1 are called heteroskedasticity-robust standard errors or White standard errors. 148 Remarks: • White standard errors are available in EViews • White standard errors should be reported in empirical studies 149 Dependent Variable: RENT Method: Least Squares Date: 11/06/04 Time: 14:25 Sample: 1 12 Included observations: 12 Variable Coefficient Std. Error t-Statistic Prob. C DISTANCE 17.39303 -1.073535 0.527137 0.181780 32.99528 -5.905673 0.0000 0.0001 R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat 0.777169 0.754885 0.775981 6.021462 -12.88980 2.183344 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic) 14.57500 1.567352 2.481634 2.562452 34.87697 0.000150 Dependent Variable: RENT Method: Least Squares Date: 11/12/04 Time: 12:23 Sample: 1 12 Included observations: 12 White Heteroskedasticity-Consistent Standard Errors & Covariance Variable Coefficient Std. Error t-Statistic Prob. C DISTANCE 17.39303 -1.073535 0.251847 0.137597 69.06182 -7.802039 0.0000 0.0000 R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat 0.777169 0.754885 0.775981 6.021462 -12.88980 2.183344 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic) 14.57500 1.567352 2.481634 2.562452 34.87697 0.000150 Now: • White test for heteroskedasticity of unknown form Basis of the test: [I] • Comparison of the estimated covariance matrices of the OLS b = X0X −1 X0y under estimator β homoskedasticity: −1 0 2 b d β =σ ˆ XX , Cov heteroskedasticity: b 0u b u 2 where σ ˆ = N −K −1 N −1 −1 X 2 0 0 0 b d β = XX u ˆi xixi X X Cov i=1 (the estimated White covariance matrix) 151 Basis of the test: [III] • Under homoskedasticity (H0) both estimators should not differ substantially −→ test statistic of the White test 152 Test statistic of the White test: [I] • Estimate the model y = Xβ + u by OLS and compute the residuals b b = y − Xβ b =y−y u ˆ2 • Use the squared residuals u i , the exogenous variables x1i, . . . , xKi , 2 their squared values x2 1i , . . . , xKi and all cross products xki xli (k = 1, . . . , K, l = 1, . . . , K, k 6= l) to specify the model u ˆ2 i = γ0 + γ1x1i + . . . + γK xKi + K X K X δkl xkixli + u∗i k=1 l=1 153 Test statistic of the White test: [II] • Estimated the model by OLS and find the coefficient of determination R2 • Under H0 we have T = N R2 ∼ asmp. χ2 K(K+1) • Reject H0 at the significance level α if T > χ2 K(K+1);1−α 154 Example: • Test the data set on Slide 102 for heteroskedasticity via the Goldfeld-Quandt test the Breusch-Pagan test the White test (see Class) Interesting question: • Which test should be preferred? 155 Remarks: • The White test is the most general test often has low power • Whenever we realistically conjecture an explicit pattern of 2 ), we should use the alterheteroskedasticty (e.g. σi2 = σ 2xki native tests (Goldfeld-Quandt test, Breusch-Pagan test) −→ use graphical tools to analyze residuals in order to detect potential patterns of heteroskedasticity 156 6.3 Feasible Estimation Procedures Result from Section 6.1: • For the heteroskedastic model y = Xβ + u, where i 0 Cov(u) = E uu = σ 2Ω, the GLS estimator is BLUE of β (vgl. Folie 126) h i−1 h GLS 0 −1 b β = XΩ X X0Ω−1y 157 Problem: • Frequently, the diagonal matrix Ω is not known b GLS cannot be computed −→ GLS estimator β Resort: • Replace the unknown (true) Ω by an unbiased and/or conb sistent estimate Ω −→ feasible GLS estimator (FGLS) 158 Definition 6.5: (FGLS estimator) b be an unbiased and/or consistent estimator of the unLet Ω known covariance matrix Ω of the heteroskedastic model y = Xβ + u, where Cov(u) = σ 2Ω. The estimator b FGLS β 0 b −1 = XΩ X −1 b X0 Ω −1 y is called feasible generalized-least-squares estimator of β . 159 Example: [I] • Consider the data set on Slide 102 • Classify the ui variances for the central (i = 1, . . . , 5) and the periphery quarters (i = 6, . . . , 12) • Consider the following model: yi = α + β · xi + ui, where 2 σi2 = σA for i = 1, . . . , 5 2 σi2 = σB for i = 6, . . . , 12 160 Example: [II] • Transformation of the model: yi 1 + β xi + ui = α σA σA σA σA for i = 1, . . . , 5 yi 1 + β xi + ui = α σB σB σB σB for i = 6, . . . , 12 −→ variances of the error terms ui 2 =1 Var σ = 12 Var(ui) = 12 σA A σ σ A ui = 12 Var(ui) = Var σ B σB for i = 1, . . . , 5 A 1 σ2 = 1 2 B σB for i = 6, . . . , 12 161 Example: [III] • Summary: yi∗ = α · zi∗ + β · x∗i + ui∗ for i = 1, . . . , 12 where y x u yi∗ = σ i , zi∗ = σ1 , x∗i = σ i , u∗i = σ i A A A A for i = 1, . . . , 5 y x u yi∗ = σ i , zi∗ = σ1 , x∗i = σ i , u∗i = σ i B B B B for i = 6, . . . , 12 162 Example: [IV] 2 , σ 2 are unknown • Variances σA B −→ estimation of the variances via the respective regressions yi = α + β · xi + ui for i = 1, . . . 5 and i = 6, . . . 12 with the respective estimators b 0u b u 2 ˆ = σ N −K −1 163 Dependent Variable: RENT Method: Least Squares Date: 11/15/04 Time: 10:41 Sample: 1 5 Included observations: 5 Variable Coefficient Std. Error t-Statistic Prob. C DISTANCE 17.12800 -0.760000 0.329560 0.233619 51.97233 -3.253162 0.0000 0.0474 R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat 0.779137 0.705516 0.286124 0.245600 0.439030 2.030098 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic) 16.14000 0.527257 0.624388 0.468163 10.58306 0.047376 Dependent Variable: RENT Method: Least Squares Date: 11/15/04 Time: 10:41 Sample: 6 12 Included observations: 7 Variable Coefficient Std. Error t-Statistic Prob. C DISTANCE 14.84061 -0.387372 2.691190 0.746566 5.514518 -0.518872 0.0027 0.6260 R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat 0.051094 -0.138687 0.966013 4.665904 -8.512870 2.184558 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic) 13.45714 0.905276 3.003677 2.988223 0.269228 0.625989 Example: [IV] • Estimated variances and standard deviations √ 0.245600 2 ˆA = = 0.081867, σ 0.081867 = 0.286124 σ ˆA = 3 √ 2 = 4.665904 = 0.933181, σ 0.933181 = 0.966013 σ ˆB ˆA = 5 −→ (estimated) transformation of the model (cf. Slides 161, 162) • FGLS estimates of the coefficients: ˆFGLS = 17.41618, α βˆFGLS = −1.013681 • Estimate of the error-term variance of the transformed model: 10.84938 ∗ d Var(ui ) = = 1.084938 12 − 1 − 1 165 Dependent Variable: RENT_TR Method: Least Squares Date: 11/15/04 Time: 10:51 Sample: 1 12 Included observations: 12 Variable Z_TR DISTANCE _TR R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Coefficient Std. Error t-Statistic Prob. 17.41618 -1.013681 0.251950 0.140983 69.12558 -7.190101 0.0000 0.0000 0.997946 0.997740 1.041604 10.84938 -16.42247 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Durbin-Watson stat 31.62998 21.91254 3.070412 3.151230 2.397311 Example: [V] • However, we know that Var(u∗i ) = 1 ˆFGLS, βˆFGLS −→ Corrected standard errors of α (via covariance matrix σ 2(X0X)−1 of the OLS estimator) SE(ˆ αFGLS) = 0.243, SE(βˆFGLS) = 0.135 −→ corrected t-values of α ˆFGLS, βˆFGLS: ˆFGLS : 71.672, t-value of α t-value of βˆFGLS := −7.509 167 Properties of FGLS estimators: • FGLS estimators are unbiased • Variances of FGLS estimators are lower than the variances of the OLS estimators • FGLS estimators are asymptotically efficient (approximation to the GLS estimator for N → ∞) 168
© Copyright 2024 ExpyDoc