Übungen zu Darstellungstheorie — Blatt 8 Jun.-Prof. Dr. Caroline Lassueur TU Kaiserslautern Dr. Mikaël Cavallin Prof. Dr. Gunter Malle Abgabetermin: Di, 20.12.2016, 18:00 Uhr WS 2016/17 Let K be a field and G be a finite group. Aufgabe 27. Let U, V be KG-modules. (a) Prove that ΦU,V : U∗ ⊗ V → HomK (U, V) defined by ΦU,V (ϕ ⊗ v)(u) := ϕ(u)v for ϕ ∈ U∗ , v ∈ V, u ∈ U, is a KG-isomorphism. (b) Let TrV : V ∗ ⊗ V → K, ( f, v) 7→ f (v) be the trace map. Prove that TrV is a KGhomomorphism and that TrV ◦(ΦV,V )−1 coincides with the ordinary trace of matrices. (c) Prove that V is a direct summand of V ⊗ V ∗ ⊗ V. Moreover, if Char(K) = p > 0 and p | dimK V, then V ⊕ V is a direct summand of V ⊗ V ∗ ⊗ V. Aufgabe 28. Prove that if G has odd order, then for every g ∈ G, we have X ν(χ)χ(g) = 1. χ∈Irr(G) Aufgabe 29. Let G = D2n be a dihedral group of order 2n, n ≥ 3. Prove that ν(χ) = 1 for all irreducible characters χ of G. (Hint: Calculate the number of elements g ∈ G such that g2 = 1.) Aufgabe 30. Check that the distributivity of multiplication over addition holds in K0 (KG), and determine whether or not K0 (KG) has a neutral element for the multiplication.
© Copyright 2024 ExpyDoc