Humboldt-Universität zu Berlin Institut für Mathematik Technische Universität Berlin Institut für Mathematik Berlin Mathematical School (BMS) Einstein-Zentrum für Mathematik Berlin(ECMath) Im Rahmen des Forschungsseminares Stochastische Analysis und Stochastik der Finanzmärkte spricht Olivier Pamen (University of Liverpool/AIMS Ghana) zu dem Thema Strong rate of convergence for the Euler-Maruyama approximation of SDES with irregular drift coefficient Zeit: Donnerstag, 17. November 2016, 16 Uhr c.t. Ort: HU Berlin, Johann von Neumann - Haus, Rudower Chaussee 25, Hörsaal 1.115 Abstract: In this talk, we consider a numerical approximation of the stochastic differential equation (SDE) t Z b(s, Xs )ds + Lt , x0 ∈ Rd , t ∈ [0, T ], Xt = x0 + 0 where b : [0, T ] × Rd → Rd is the drift coeffcient and the noise L = (Lt )0≤t≤T is a d-dimensional Lévy process. In general, convergence of numerical methods are studied under the classical assumption that the coeffcient of the SDE is globally Lipschitz continuous. However, this assumption is not always satis ed for SDEs used in practice, this makes the global Lipschitz based idea not immediately applicable. We assume that the drift b is Hölder continuous in both time and space variables. We provide the rate of convergence for the Euler-Maruyama approximation when L is a Wiener process or a truncated symmetric α- stable process with α ∈ (1, 2). Our technique is based on the regularity of the solution to the associated Kolmogorov equation. Traditionally, the Kolmogorov equation is used to study the weak convergence rate for the Euler-Maruyama approximation which is for example very important in nancial applications.(This talk is based on a join work with Dai Taguchi, Ritsumeikan University.) Kaffee und Tee ab 15.45 Uhr im Raum 1.214, Johann von Neumann - Haus, Rudower Chaussee 25 Interessenten sind herzlich eingeladen! Prof. P. Bank Prof. P. Friz Prof. U. Küchler Prof. D. Becherer Prof. U. Horst Prof. A. Papapantoleon Prof. H. Föllmer Prof. P. Imkeller Prof. N. Perkowski
© Copyright 2025 ExpyDoc