Variation der Konstanten B Man löse die Differentialgleichung √ y 00 − 8y 0 + 16y = e4x x | {z } y 0 (1) = −2 y(1) = 1, f (x) 1. Homogene Lösung: λ2 − 8λ + 16 = 0 λ1,2 = 4 (Resonanz!) ⇒ yh (x) = c1 e4x + c2 x e4x 2. Partikulärlösung, Variation der Konstanten: 4x yp (x) = c1 (x) |{z} e4x +c2 (x) xe |{z} y1 (x) wobei c1 (x) = Z y2 (x) −y2 (x)f (x) dx W (x) y1 (x) mit W (x) = y10 (x) c2 (x) = y2 (x) e4x = 0 y2 (x) 4e4x xe4x (1 − 4x)e4x Z y1 (x)f (x) dx W (x) = (1 − 4x)e8x − 4xe8x = e8x √ Z −xe4x e4x x dx 2x5/2 3/2 c1 (x) = = − x dx = − e8x 5 Z Z 4x 4x √ √ x dx e e 2x3/2 = c2 (x) = x dx = 8x e 3 Z yp (x) = − 4 5/2 4x 2x5/2 4x 2x3/2 4x e + xe = x e 5 3 15 3. Allgemeine Lösung: y(x) = c1 e 4x + c2 xe 4x 4 + x5/2 e4x = 15 4 5/2 4x e c1 + c2 x + x 15 4. Lösung des Anfangswertproblems: 4 y(1) = c1 + c2 + e4 = 1 15 4 5 3/2 4x 4 2 16 y 0 (x) = c2 + e + c1 + c2 x + x5/2 ·4e4x = 4c1 + c2 + 4c2 x + x3/2 + x5/2 e4x · x 15 2 15 3 15 2 16 4 y 0 (1) = 4c1 + 5c2 + + e = −2 3 15 4 . = −0.248 15 2 16 . 4c1 + 5c2 = −2e−4 − − = −1.770 3 15 . . ⇒ c1 = 0.530 c2 = −0.778 c1 + c2 = y(x) = e−4 − 4 5/2 4x e 0.530 − 0.778x + x 15
© Copyright 2025 ExpyDoc