1 A solution to Problems(物理化学 I)Problem 3 1) 273 273 273 1 ⎤ ⎡ ΔH = ∫ CP dT = ∫ (62.76 + 0.0084T )dT = ⎢62.76 + 0.0084 × T 2 ⎥ =17446-510023 2 ⎦773 ⎣ 773 773 = - 492577Ε − 493 (kJ/mol) ΔU = ΔH − PΔV =ΔH- 1×0.004×1.0132×102= ΔH- 0.41 = - 492577 – 0.41= - 492577.41 =492.577 (kJ/mol) 1dm3 atm=1.0132×102 2) 等温変化に際して理想気体の内部エネルギーは変化せず一定である ⎛ ∂U ⎞ ⎛ ∂U ⎞ ⎛ ∂U ⎞ dU = ⎜ ⎟ dV + ⎜ ⎟ dT より dT = 0, ⎜ ⎟ = 0 for ideal gas. 故に dU = 0 ⎝ ∂V ⎠ T ⎝ ∂T ⎠ V ⎝ ∂T ⎠ V dU = dq + dw より、dq=—dw= pdv 2 2 1 1 2 nRT dV , V 1 ∫ dq = −∫ dw = ∫ Q = - W = nRTIn(V2/V1) = (50/32) ×8.314×300×2.303log(45/1.5) =13.256(kJ/mol) ΔH = ΔU+ Δ(PV) = ΔU + Δ(nRT) = ΔU + nRΔT = 0 3) ⎛ ∂U ⎞ ⎛ ∂U ⎞ For ideal gas: dU = dq + dw = ⎜ ⎟ dV + ⎜ ⎟ dT ⎝ ∂V ⎠ T ⎝ ∂T ⎠ V ⎛ ∂U ⎞ dT = 0, ⎜ ⎟ = 0 ⎝ ∂T ⎠ V =0 dU = dq + dw より、dq=—dw= pdv Q = - W = nRTIn(V2/V1) = 8.314×300×2.303log(1/10) = - 5.744(kJ/mol) For van der Waals Gas: dU = TdS – PdV より ⎛ nRT nR n 2a ⎞ n 2a ⎛ ∂U ⎞ ⎛ ∂S ⎞ ⎛ ∂P ⎞ −⎜ − ⎜ ⎟ = T⎜ ⎟ − P = T⎜ ⎟ − P = T ⎟ = 2 ⎝ ∂V ⎠ T ⎝ ∂V ⎠ T ⎝ ∂T ⎠ V V V − nb ⎝ V − nb V 2 ⎠ where ⎛ ∂P ⎞ ⎛ ∂S ⎞ dA = -PdV- SdT より, ⎜ ⎟ = ⎜ ⎟ , ⎝ ∂T ⎠ V ⎝ ∂V ⎠ T van der Waals Gas equation : ⎛ n 2a ⎞ ⎜ P + 2 ⎟ (V − nb ) = nRT, V ⎠ ⎝ nRT n 2a P= − , V − nb V 2 nR ⎛ ∂P ⎞ ⎜ ⎟ = ⎝ ∂T ⎠ V V − nb For 1mol (at constant temperature for 1mol): a ⎛ ∂U ⎞ ⎛ ∂U ⎞ dU = ⎜ ⎟ dV + ⎜ ⎟ dT = dV , ΔU = ⎝ ∂V ⎠ T ⎝ ∂T ⎠ V V2 2 ⎛1 1⎞ a ⎡ a ⎤ ∫ V 2 dV = ⎢⎣− V 2 ⎥⎦V = a ⎜⎝ V1 − V2 ⎟⎠ V1 1 V2 V 1 2 ⎛1 1⎞ a⎞ V −b ⎛ RT W = − ∫ PdV = − ∫ ⎜ − 2 ⎟ = RTIn 1 + a⎜ − ⎟ ⎝V−b V ⎠ V2 − b ⎝ V1 V2 ⎠ V1 V1 V2 V2 ⎛ 1 1 ⎞ ⎧⎪ ⎛1 1 ⎞⎫ V −b Q = ΔU − W = a ⎜ − ⎟ − ⎨ RTIn 1 + a⎜ − ⎟ ⎬ V2 − b ⎝ V1 V2 ⎠ ⎪⎩ ⎝ V1 V2 ⎠ ⎭ 10 − 0.115 = −8.3145 × 300 × 2.303log 1 − 0.115 =- 6.020 (kJ/mol) 1 4) P2 ⎛ P1 ⎞ γ ⎛ P2 ⎞ RT PV P1/P2=(V2/V1)γより 2 = 2 2 = = ⎜ ⎟ ⎜ P⎟ RT1 P1V1 P1 ⎝ P2 ⎠ ⎝ 1⎠ =29.288, CP = R+Cv T2 ⎛1⎞ =⎜ ⎟ 400 ⎝10⎠ 5) 1− 1 γ ⎛1⎞ =⎜ ⎟ ⎝10⎠ 1− 1 γ CP/ Cv=γ , ideal gasCP - Cv = R より ∴ γ = (29.288/20.92)=1.4 0.2857 ∴ Τ2 = 207.2 Κ 不可逆断熱膨張の場合: Q = 0 ∴ΔU =W = n CV(T2 – T1) = 0.35 × (3/2) ×0.08206×(T2 – 400) 定圧膨張の場合:W = - PΔV =0.5 × (5 - 1) = - 2.0(dm3 atm) ∴0.35 × (3/2) ×0.08206×(T2 – 400), T2=353.8 K ΔH = ΔU+ Δ(PV) = - 2.0 + 0.5(5-1) = 0 6) Q = 0, ∴ W = ΔU = n CV(T2 – T1) = (10/32) × 25.1 ×(333– 298) = 274.5 (J/mol) ∴ W = -P2(V2 –V1) = -P2{(nRT2/P2) - (nRT1/P1)} = (-10/32) ×8.3145×333+ P2{(-10/32) ×8.3145×298}=274.5 (J/mol) ∴ P2=1.47 From P2V2=nRT2 7) a) P2=1.47atm V2=nRT2 / P2 =5.8 (dm3) 2CO(g) + O2 2CO2(g) ΔH =2×(- 395.51) - 2×(- 110.53) = - 569.96 (kJ/mol) ΔH = ΔU+ Δ(PV) = ΔU + Δn(RT) よりΔU = ΔH - Δn(RT) = - 569.96 – (2 -3) ×8.3145×(273+25) ×10-3= - 567.5 (kJ/mol) b) 4HCl(g) + O2 2H2O (g) + 2Cl2(g) ΔH =2×(- 241.82) + 0 - 4×(- 92.31) = - 114.4 (kJ/mol) ΔU = ΔH - Δn(RT) = = - 114.4 – (4 - 5) ×8.3145×(273+25) ×10-3 = - 111.9(kJ/mol) c) SO3(g) + H2O(l) H2SO4(l) ΔU = ΔH - Δn(RT) = = - 132.44 – (1 - 2) ×8.3145×(273+25) ×10-3 = - 129.9 (kJ/mol) d) AgBr(s) + 1/2Cl2 AgCl(s) + 1/2 Br2(g) ΔU = ΔH - Δn(RT) = = - 11.25–{(1 + 1/2) – (1+1/2)} ×8.3145×(273+25) ×10-3 2 3 = - 11.25(kJ/mol) e) 2C2H6(g) + 7O2(g) 4CO2(g) + 6H2O ΔU = ΔH - Δn(RT) = = - 3127.66–{(4 + 6) – (2+7)} ×8.3145×(273+25) ×10-3 = - 3130(kJ/mol) 8) C6H5COOH(s) + (15/2) O2 (g) 7CO2 (g) +3H2O (l) Benzoic acid M.W.=122 ΔU = - 26,359(J) ×122= - 3215.8 (kJ/mol) ΔH = ΔU + ΔνRT よ り ΔH = - 3215.8 + {7−(15/2)}×8.3145×(273+25) ×10-3 =-3217.039 Heat of formation of C6H5COOH=x ∴ x = - 408.9 (kJ/mol) 7×(-395.5) + 3 × (-285.8) – x = -3217 9) H20(g); Cp H20 = 34.39+6.28×10-4T+5.6 ×10-8 T2 とおく 1000 ΔH = 1000 ∫ C dT = ∫ (34.39 + 6.28 ×10 P 298 10) −4 T + 5.6 × 10−8 )dT =24.45 (kJ/mol) 298 For NO: N(g) + O (g) ΔH1 1/2 N2(g) + 1/2 O2(g) ΔH2 NO(g) ΔH ΔH1 = 0 – (472.7+249.17)= - 721.87 (kJ/mol) ΔH2 = (90.25) - 0= 90.25 (kJ/mol) ∴ ΔH1= ΔH1 + ΔH1 = - 721.87 + 90.25= -631.62 (kJ/mol) : Bond energy for NO For HCl: H(g) + Cl (g) 1/2 H2(g) + 1/2 Cl2(g) ΔH1 ΔH2 HCl(g) ΔH ΔH1 = 0 – (217.97+121.68)= - 339.65 (kJ/mol) ΔH2 = (-92.31) - 0= - 92.31 (kJ/mol) ∴ ΔH= ΔH1 + ΔH2 = - 339.65 - 92.31 = -432.0 (kJ/mol) : Bond energy for HCl 11) For C2H6: 2C(g) + 6H (g) ΔH1 2 C(s) + 3 H2(g) ΔH2 C2H6(g) ΔH ΔH1 = 0 – (716.68×2+217.97×6)= - 2741.28 (kJ/mol) ΔH2 = (-84.68) - 0= - 84.68 (kJ/mol) ∴ ΔH= ΔH1 + ΔH2 = - 2741.28 - 84.68 = - 2825.96 (kJ/mol) Text P44, Tab3.4 より C-H Bond energy=414 (kJ/mol) (H-CH3) Therefore C-C bond energy for C2H6=2825.86 - 6×414=342 (kJ/mol) 12) Text P44, Tab3.4 より C2H6 :- (414 ×6+347)= - 2831(kJ/mol) ,C2H5OH :-(414×5+351+460+347)=- 322(kJ/mol) C2H5SH :-(414×5+255+368+347)=- 3040(kJ/mol),これらのエネルギーは成分原子か らの生成熱であるから次の様なサイクルを考える. 1: 2C(g) + 6H C2H6 ΔH=- 2834 (kJ/mol) 3 4 2: 2C(g) + 6H +O C2H5OH ΔH= -3228(kJ/mol) 3: 2C(g) + S +6H C2H5SH ΔH=- 3040 (kJ/mol) 4: C(graphite) C ΔH= 716.68 (kJ/mol) 5: H2 2H ΔH=217.97×2=435.94(kJ/mol) 6: O2 2O ΔH=249.17×2=498.34 (kJ/mol) 7: S(crystal) S(g) ΔH=278.81(kJ/mol) 2C(g)+6H(g) C2H6(g) For C2H6: 2C(s) + 3H2(g) ΔH1 ΔH2 ΔH ΔH1 = 716.68×2+435.94×5= - 2741.18 (kJ/mol) ΔH2 = -1 ×(C-C bond energy) -6×(C-H bond energy) = -347- 414×6 = - 2834 (kJ/mol) ∴ ΔH= ΔH1 + ΔH2 = - 2741.18 - 2834 = - 89.8 (kJ/mol) 同様に For C2H5OH: ∴ ΔH= ΔH1 + ΔH2 = 2990 - 3224 = - 234 (kJ/mol) For C2H5SH: ∴ ΔH= ΔH1 + ΔH2 = 3020 - 3040 = - 20 (kJ/mol) 13) ΔH1673 CO(g) + 1/2 O2(g) ΔCp=CP,CO2 - ( CP,CO+1/2 CP,O2) CO2(g) ⎡ ⎤ −3 −7 2 ⎢ ⎥ T −148.3 ×10 T ) (25.99 + 43.50 ×10 1673 1673 ⎥ ⎢ = ΔH291 + ∫ ΔCP dT = −282880 + ∫ ⎢−(26.861 + 6.966 ×10−3 T − 8.201 ×10−7 T 2 ) ⎥ 291 291 ⎢ ⎥ 1 −3 −7 2 ⎢− (25.723 + 12.98 ×10 T − 38.62 ×10 T )⎥ ⎦ ⎣ 2 = - 279.839(kJ/mol) where 16732=2798929, 2912=84681, 16733=4682608217, 2913=24642171, T=(1673- 291)=1382, T2=[2798929-84681]=2714248, T3=4657966046 14) ⎡(25.99 + 43.50 ×10−3 T −148.3 ×10−7 T 2 ) ⎤ ⎢ ⎥ 1673 T +2 × (30.359 + 9.615 ×10−3 T + 11.84 ×10−7 T 2 )⎥ ⎢ ΔHT = ΔH0 + ∫ ΔCP dT = ΔH0 + ∫ −3 −7 2 ⎢ ⎥ 291 −(14.146 + 75.496 ×10 T −179.9 ×10 T ) 0 ⎢ ⎥ −3 −7 2 ⎢⎣−2 × (25.723 + 12.98 ×10 T − 38.62 ×10 T ) ⎥⎦ = ΔH0+21.116T-19.363×10-3T2+44.173×10-7T3 where: ΔCp=(CP,CO2(g)+2 CP,H2O(g)) - ( CP,CH4(g)+2 CP,O2(g)) CP,CO2(g);25.99+43.50×10-3T – 148.3×10-7T2, CP,H2O;30.359+9.615×10-3T + 11.84×10-7T2, CP,CH4(g);14.146+75.496×10-3T – 179.9×10-7T2, CP,O2;25.723+12.98×10-3T – 38.62×10-7T2, 4
© Copyright 2025 ExpyDoc