光散乱の古典理論 • 光散乱の古典理論 – 誘電率の揺らぎによる光散乱 • 液体の光散乱 – 空間相関と構造因子 臨界タンパク光 混合液体系(Binary Liquid system)の例 温度計 Hexane(C6H14) : Methanol(CH3OH) = 6 : 4 (in mol ) ~ 5 : 1 (in volume) Hexane-rich phase 2成分の界面 Methanol-rich phase 臨界タンパク光 - Opalescence 光の波長程度の粒径に液滴が成長したときに、強く光が散乱され る。 Partially Miscible Binary Systems hexane and methanol Begin with pure A (left side of graph). Only have one phase. As B is added: Below the saturation limit, there will only be one phase Above the saturation limit, there will be two phases. Mole fraction of methanol, In this diagram, the composition of one of the phases is a’ and the composition of the other phase is a”. Eventually enough B is added such that A is actually dissolved in B and you once again only have one phase. Above Tuc (the upper critical temperature), the two liquids are miscible in all proportions. No phase separation occurs. 風景の変化 Q: Does aerosol have anything to do with the difference? ステンドガラス 金属・半導体微粒子の分散による光吸収・散乱 火星の夕焼け NASA MARS PATHFINDER 粒径による散乱の違い 粒径 a 光の波長 λ a<< λ a~ λ a>> λ Geometric scattering Mie-scattering Exact solution of scattering by spheres similar in size to wavelength of radiation results in larger scattering in the forward direction. Coherent vs. Incoherent light scattering Coherent light scattering: scattered wavelets have nonrandom relative phases in the direction of interest. Incoherent light scattering: scattered wavelets have random relative phases in the direction of interest. Example: Forward scattering is coherent— even if the scatterers are randomly arranged in space. Path lengths are equal. Off-axis scattering is incoherent when the scatterers are randomly arranged in space. Path lengths are random. Coherent vs. Incoherent Scattering Coherent scattering: Total complex amplitude, . Irradiance, I∝ µ A2. So: Ic ∝µ N2 Incoherent scattering: Total complex amplitude, The irradiance qm=qn So incoherent scattering is weaker than coherent scattering, but not zero. The equations of optics are Maxwell’s equations. E r /e B 0 B E t E B me t B the magnetic field, r is where E is the electric field, is the charge density, e is the permittivity, and m is the permeability of the medium. 誘電率の揺らぎによる電磁波の散乱 D Rr R 3 d r ni , E0 r ki , i O V e (r , t ) e 0 (eI e (r , t )) I : unit tenso r, ni : unit vecto r Ei (r , t ) ni E0 exp{i(ki r i t )} e ( R) e 0eI 入射波と散乱波 D 0 B 0 B E t D H t Ei , Di , H i , Bi ES , DS , H S , BS E Ei ES D Di DS H Hi H S B Bi BS 0th order solution • Maxwell equation Di 0 Di ee0 Ei Bi 0 ki ni 0 Bi Ei t Di Hi t 2 Di Ei m0 2 t A ( A) 2 A Ei 2 e 2 Ei c 2 t 2 0 ki e c i 1st order solution (1) • Maxwell equation 2 DS ES m 0 t 2 e (r , t ) e 0 (eI e (r , t )) D e (r , t ) E e 0 (eI e (r , t ))( Ei ES ) e 0eEi e 0eES e 0e (r , t ) Ei o( 2 ) DS e 0eES e 0e (r , t ) Ei e (r , t ) ES DS Ei e 0e e 1 2 DS e 2 DS c 2 t 2 {e 0e (r , t ) Ei } 1st order solution (2) • Hertz vector DS 2 e 2 c t 1 ( R, t ) 4 2 2 dr 3 e 0e (r , t ) Ei e 0e (r , t ' ) Ei (r , t ' ) V Rr t' t 1 DS ( R, t ) R R 4 V 3 d r e c Rr e 0e (r , t ' ) Ei (r , t ' ) Rr st 1 order solution (3) • Scattering field 1 3 e ( r , t ' ) Ei ( r , t ' ) E S ( R, t ) R R d r V Rr 4e E0 d 3r i ( ki r i t ') R R (e (r , t ' ) : ni )e V 4e R r Fourier component of the fluctuation e(r,t) 1 e (r , t ' ) 2 it ' d e ( r , ) e E0 E S ( R, t ) R R 4e d 3 r iki r 1 i (i ) t ' e d (e (r , ) : ni )e V 2 R r 1st order solution (4) Far field approximation R r R r kˆS t' t e c kˆS R / R ( R r kˆS ) E0 iit d 3 r i ( k i i E S ( R, t ) e R R ( e V 4e Rr 1 it d e (e (r , ) : ni )e 2 i e c (i ) R ) e c (i ) kˆS ) r 1st order solution (5) • Scattering wave S i , e e ˆ kS (i )k S S kˆS , q ki k S c c • Slow fluctuation approximation E0 iit d 3 r i ( k i i E S ( R, t ) e R R ( e V Rr 4e i 1 it de (e (r , ) : ni )e 2 e c (i ) R e c (i ) kˆS ) r ) ω積分の外に出す。 3 E 0 i i t d r iqr ikS R E S ( R, t ) e R R (e e (e (r , t ) : ni )) V Rr 4e 1st order solution (6) Far field approximation again Rr 1 R 1 , ik in R -1 order E0 i ( k S R i t ) E S ( R, t ) e k S k S d 3 re iqr (e (r , t ) : ni ) V 4eR Fourier transformation of e in r-space e (q, t ) d 3reiqre (r, t ) V nS : unit vecto r of ES nS k S 0, ES E0S nS E0 i ( k S R it ) E ( R, t ) e nS k S k S (e (q, t ) : ni ) 4eR A ( B C ) B( A C ) C ( A B) S 0 1st order solution (7) 2 E0 k S i ( k S R i t ) S E0 ( R, t ) e eSi (q, t ) 4eR • 誘電率の揺らぎテンソル eSi (q, t ) nS (e (q, t ) : ni ) • Scattering amplitude i ( k S R i t ) e E0S ( R, t ) R E0S ( R, t ) E0e Si (q, t ) E0S ( R, t ) 0 球面波 入射振幅、揺らぎに比例 形応答 線 Power spectrum of the scattering wave • Wiener-Khinchin theorem I S (q, S ) C (t )e iS t dt 2 C (t ) ES (t t0 ) ES (t0 ) ES * 1 lim T T ES (t ) ES (0) * T 0 ES (t s ) ES ( s )ds * エルゴード性が成り立つときはア ンサンブル平均になる。 2 kS * i i t ES (t ) ES (0) E0 eSi (q, t )eSi (q,0) e 4eR 4 I 0 i * I S (q, ) 2 2 5 dt eSi (q, t )eSi (q,0) eit 8 R c 2 * 2 等方的媒質による散乱 • 誘電率の揺らぎテンソル eSi (q, t ) nS (e (q, t ) : ni ) (nS ni )e (q, t ) e e r e T 通常小さい T r r T 密度揺らぎ 温度揺らぎ I 0 i I S (q, ) 2 2 5 8 R c 4 e (nS ni ) 2 dt r* (q, t )r(q,0) eit r T 2 空間フーリエ変換 r(q, t )r(q,0) V d 3re iqr r(r, t )r(0,0) V 密度揺らぎの時間空間相関関数 動的構造因子 • 動的構造因子 S (q, ) d 3re iqr dteit r(r , t )r(0,0) V I 0V i I S (q, ) 2 2 5 8 R c 4 • 構造因子 • 散乱強度 e (nS ni ) 2 S (q, ) r T d S (q) S ( q, ) 2 I (q) S (q) 2 光散乱の性質 I 0V i I S (q, ) 2 2 5 8 R c 4 e (nS ni ) 2 S (q, ) r T 2 • 散乱のパワースペクトルは動的構造因子のフーリエ変換に比例 する。 – 動的構造因子を実験的に決定可能 • 散乱光強度は入射周波数の4乗に比例 – 青い空、夕焼け • 偏光 – 空の偏光 • 密度ゆらぎの増大によって大きく散乱される。 – 臨界タンパク光 • エネルギー保存 散乱の角度依存性について • 散乱角 I 0V i I S (q, ) 2 2 5 8 R c 4 ki 2 e (nS ni ) S (q, ) r T kS q 2 q I1 1 I 2| cos 2 q I 1 cos 2 q 密度空間相関関数 Critical Opalescece (臨界タンパク光)をどう理解するか? G (r ) r(r )r(0) r (r ) r (0) r 2 • レナードジョーンズポテンシャル V (r ) 12 6 r0 r0 V (r ) V0 2 r r r0 r • Hard core model r0 G (r ) V (r ) r0 G (r ) r r r0 r 密度空間相関関数1 等温圧縮率との関係 G (r ) r(r )r(0) r (r ) r (0) r (N N ) N 2 N G ( r ) 0 ( r ) N drr (r ) 粒子の全数に対する揺らぎ 2 2 2 1 2 N N exp( E N mN ) pN rd d L 3N N 0 N !h 1 1 1 N N d rd pN exp( E N mN ) L 3N N 0 N !h 2 2 2 ( PV / kT ) ) L (ln 2 2 (kT ) (kT ) 2 2 m T ,V m T ,V ln L PV (Huang, 1963) kT 密度空間相関関数2 等温圧縮率との関係 ( N N )2 2 2 ( PV / kT ) P 2 (kT ) kTV 2 2 m T ,V m T ,V ( N / V ) kT N V kTV V m T , N m T ,V N P n m V T ,V (F m N ) w w w z y x y z z y y x 1 2F 1 V 1 V T 2 V P T , N V P T , N N m T , N ( N N ) 2 N rkT T 密度空間相関関数3 等温圧縮率との関係 T • 理想気体の等温圧縮率 ( N N )2 N • 一方、 T 0 T 0 1 をつかうと rkT N drr (r ) ( N N )2 dr dr 'r(r )r(r ' ) T 1 r drG (r ) 0 T V drG(r ) 密度空間相関関数4 等温圧縮率との関係 T 1 r drG (r ) 0 T 一方、臨界点近傍では、 T ( T T ) C 0 T 1.圧縮率の増大 2.密度揺らぎの増大 2.密度空間相関関数のおよぶ範囲(相関長)の増大 I (q) S (q) 相関長の逆数がqに近づいたとき散 乱強度が増大。 S (q) d 3re iqr r(r )r(0) d 3re iqrG(r ) V V Critical Opalescence
© Copyright 2024 ExpyDoc