ハイパー核構造の今後の展望 --少数粒子系理論物理的観点から-肥山詠美子(理研) 精密少数多体系計算 ガウス展開法 “Gaussian Expansion Method for Few-Body Systems” E. Hiyama, Y. Kino, M. Kamimura, Prog. Part. Nucl. Phys. 51 (2003) 223 - 307. 量子力学的3体系、4体系のシュレディンガー方程式を 厳密に(近似的ではなく)解く方法(束縛状態に対して) 3体問題シュレーディンガー方程式 : 6変数2階偏微分方程式 3体問題 4体問題 少数多体系のシュレーディンガー方程式を精密に解く 「ガウス展開法」の利点 クーロン3体問題は 10桁の精度 V(R) ・ 構成粒子は何でもよい、 質量、電荷を問わない。 強い相関 (核力など) (電子、陽子、中性子、クオーク、・・・・・) ・ 粒子間に強い相関がある場合 にも精密に適用できる。 3体問題 4体問題 0 R 現在は、 さらに 5体問題 特に重点をおいて これまで研究を行ってきた。 私の研究の 進め方の特徴 ハイパー核物理 フィードバック: 不安定核物理 適用・貢献 私の研究法の発展 宇宙・天体核物理 私が創った研究法 「無限小変位ガウス・ローブ法」 (量子力学的3体・4体問題を 精密に解く方法) ミュオン触媒核融合 少数粒子系物理 ハドロン物理 QCD 現在の S= -1, -2 の世界 Lattice QCD ハドロン 中間子理論 クオーク模型 YN散乱実験 極端に少ない ハイペロンー核子(YN)、 ハイペロンーハイペロン(YY)間力 私の役割 (Few-body計算法 を用いて) X よく分かっていない 多体系のダイナミクス Few-body計算 Shell 模型 Cluster模型 まずは、構造の研究から、相互作用を決めるのが、先決なのが現状 中性子星の 内部の研究 まだまだ 発展途上 相互作用を決めるストラテジー ハイペロン(Y)-核子(N)、ハイペロン(Y)-ハイペロン(Y)相互作用 中間子理論 クオーク理論 ③改良点を指摘 ①使用 ハイパー核構造の精密計算 No direct informationX 私の少数粒子系 精密計算法 ② 比較 ハイパー核の高分解能の分光実験 Ge検出器を用いたガンマ線分光技術の発展 ハイパー核の励起準位からのガンマ線を数keVの精度で測定可能 相互作用を決めるストラテジー ハイペロン(Y)-核子(N)、ハイペロン(Y)-ハイペロン(Y)相互作用 中間子理論 クオーク理論 ①使用 ③改良点を指摘 ハイパー核構造の精密計算 No direct X information ② 比較 実際にどのようにして構造研究から相互作用を決めていくのか? ハイパー核の高分解能の分光実験 Ge検出器を用いたガンマ線分光技術の発展 ハイパー核の励起準位からのガンマ線を数keVの精度で測定可能 2. S= -1 ハイパー核 と YN 相互作用 ΛN interaction (effectively including ΛN -ΣN coupling) Almost determined since 1998 One of the important issue ----- SLS (Symmetric LS) ----- ALS (Anti symmetric LS) YN LS force and energy-splitting in 9Be and Λ ----- SLS (Symmetric LS) ----- ALS (Antisymmetric LS) 13C Λ Λ Λ 8Be 12C 9Be Λ 13C Λ [vanishes in S=0 nuclei, Pauli] [breaks charge symmetry] In the ALS part : 0 < VALS (meson theory) << VALS (constituent quark model) Nijgemen model D, F , soft core ’97a-f Kyoto-Niijata FSS potential BNL-E929 BNL-E930 Λ (0s) 3/2+ γ 2+ γ 5/2+ 0+ ΔE 3/2- ΔE LS splitting γ γ 0+ 1/2+ 8Be 1/2- Λ (0p) 1/2+ 12C 9Be 13C Λ Λ 3- and 4-body calculations: E. Hiyama, M. Kamimura, T. Motoba, T. Yamada and Y. Yamamoto Phys. Rev. Lett. 85 (2000) 270. Λ α α 9Be Λ α α α Λ 13C Λ YN LS force 1) Meson theory : Nijmegen Model D, F, soft core’97 a – f. 2) Qurak model : Kyoto-Niigata, FSS ΛN LS force and 9Be Λ and 13C Λ 9Be Λ BNL-E930 80 5/2+ 200 keV ~ 3/2+ 3/2+ 5/2+ Quark Meson 13C Λ H. Akikawa et al. Phys. Rev. Lett. 88 (2002) 082501; H. Tamura et al. Nucl. Phys. A754 (2005) 58c 35 ~ 40 keV Nijmegen model D,F Soft core ’97a-f 360 3/2- 960 keV ~ 1/2- Meson 3/2+ 5/2+ Exp. 43±5 keV BNL-E929 1/23/2Quark 150 ~ 200 keV 1/23/2Exp. 152 ± 54 ±36 keV S.Ajimura et al. Phys. Rev. Lett. 86,(2001) 4255 LS splitting in Λ9Be Meson Theory SLS 5/2+ 140~250 keV (Large) (Small) SLS + ALS 5/2+ We suggested there are 2 paths to improve the Meson models : reduce the SLS strength or enhance the ALS strength so as to reproduce the observed LS splittings in 9Be and Λ13C. Λ 80~200 keV 3/2+ 3/2+ Exp. 43±5 keV (Large) - (Large) SLS + ALS Λ α 35~40keV α 9Be Λ Quark-based 3/2+ 5/2+ 5/2+ 3/2+ LS splitting in 9Be Λ Recently, a new YN interaction based on meson theory, extended soft core potential 06 (ESC06) by Th. A Rijken 9Be Λ (reduced) (small) SLS SLS + ALS 3/2+ 98 keV 5/2+ ESC06 Hiyama (2007) 39 keV Good agreement BNL-E930 3/2+ 5/2+ Exp. 43±5 keV H. Akikawa et al. Phys. Rev. Lett. 88,(2002)82501; H. Tamura et al. Nucl. Phys. A754,58c(2005) 相互作用を決めるストラテジー ハイペロン(Y)-核子(N)、ハイペロン(Y)-ハイペロン(Y)相互作用 中間子理論 クオーク理論 ①使用 No direct informationX ③改良点を指摘 ④ new version potential (ESC06) 9Beと13Cのハイパー核構造の精密計算 Λ Λ ② 比較 ⑤実験と一致 ハイパー核の高分解能の分光実験 Ge検出器を用いたガンマ線分光技術の発展 ハイパー核の励起準位からのガンマ線を数keVの精度で測定可能 Hypernuclear g-ray data since 1998 ・Millener (p-shell model), Picture by Tamura ・ Hiyama (few-body) In S=-1 セクターにおいて、残されている重要課題 (1)Charge symmetry breaking (2) ΛN-ΣN coupling ・E13 “γ-ray spectroscopy of light hypernuclei” by Tamura and his collaborators Day-1 experiment 11B Λ 4He Λ ・E10 “Study on Λ-hypernuclei with the doubleCharge-Exchange reaction” by Sakaguchi , Fukuda and his collaboratiors 9He Λ 6H Λ (1) Charge Symmetry breaking In S=0 sector Energy difference comes from dominantly Coulomb force between 2 protons. Exp. N+N+N 0 MeV Charge symmetry breaking effect is small. - 7.72 MeV 1/2+ 1/2+ - 8.48 MeV 3H n n n p 3He p p Charge Symmetry breaking Exp. 3He+Λ 0 MeV -1.00 1+ -1.24 3H+Λ 0 MeV 0.24 MeV -2.39 1+ -2.04 0+ 0+ 0.35 MeV n p p 4He Λ Λ n n p Λ 4H Λ 3He+Λ 0 MeV 1+ -1.00 -1.24 (cal: -0.01 MeV(NSC97e)) 0+ (cal. 0.07 MeV(NSC97e)) -2.04 Λ n n Λ p Λ 4He 0+ (Exp: 0.35 MeV) p p 1+ (Exp: 0.24 MeV) -2.39 n 3H+Λ 0 MeV ・A. Nogga, H. Kamada and W. Gloeckle, Phys. Rev. Lett. 88, 172501 (2002) 4H Λ ・E. Hiyama, M. Kamimura, T. Motoba, T. Yamada and Y. Yamamoto, Phys. Rev. C65, 011301(R) (2001). N ・H. Nemura. Y. Akaishi and Y. Suzuki, Phys. Rev. Lett.89, 142504 (2002). N N Λ + N N N Σ Exp. 3He+Λ 0 MeV -1.15 1+ γ -2.39 0+ n p p 4He Λ But, we need BΛ in Λ4He. Recently, Tamura et al. pointed out that it is necessary to perform γ-ray experiment about this hypernucleus again . “Because the measurement of this data was once reported in 1970’s. At that time, the statistical quality of the 4He γ- ray spectrum was extremely poor ” Λ Λ J-PARC: Day-1 experiment ・E13 “γ-ray spectroscopy of light hypernuclei” by Tamura and his collaborators We should wait for their data at J-PARC. It is interesting to investigate the charge symmetry breaking effect in p-shell Λ hypernuclei as well as s-shell Λ hypernuclei. For this purpose, to study structure of A=7 Λ hypernuclei is suited. Because, core nuclei with A=6 are iso-triplet states. n n α 6He n p α 6Li(T=1) p p α 6Be n n n α 7He Λ p Λ Λ Λ p p α 7Li(T=1) Λ α 7Be Λ Then, A=7 Λ hypernuclei are also iso-triplet states. It is possible that CSB interaction between Λ and valence nucleons contribute to the Λ-binding energies in these hypernuclei. Reported by Hashimoto at HYP-X Exp. 1.54 6He 6Be 6Li (T=1) -3.79 7Li (T=1) Λ Λ 7He 7Be Λ Important issue: To predict the Λ binding energy of 7ΛHe whose analysis is in progress at JLAB using ΛN interaction to reproduce the Λ binding energies of 7Li (T=1) and 7Be Λ Λ To study the effect of CSB in iso-triplet A=7 hypernuclei. n n n α 7He Λ p Λ Λ Λ p p α 7Li(T=1) Λ α 7Be Λ For this purpose, we study structure of A=7 hypernuclei within the framework of α+Λ+N+N 4-body model. E. Hiyama, Y. Yamamoto, T. Motoba and M. Kamimura,PRC80, 054321 (2009) Now, it is interesting to see as follows: (1)What is the level structure of A=7 hypernuclei without CSB interaction? (2) What is the level structure of A=7 hypernuclei with CSB interaction? Reported by Hashimoto by HYP-X (Exp: 1.54) 6Be (Exp: -0.14) (exp:-0.98) 6Li 6He (T=1) 7Be Λ 7Li (T=1) Λ 7He Λ Next we introduce a phenomenological CSB potential with the central force component only. Strength, range are determined ao as to reproduce the data. 3He+Λ 0 MeV -1.00 1+ -1.24 3H+Λ 0 MeV 0.24 MeV -2.39 1+ -2.04 0+ 0+ 0.35 MeV n p p 4He Λ Λ Exp. n n p Λ 4H Λ With CSB p α n p p Λ α 7Be Λ The experimental BΛ value is found to be reproduced results without the CSB effect and to be inconsistent with the results with CSB. Without CSB With CSB In order to reproduce the binding energy of Λ7Be, the CSB interaction seems to be vanishing or opposite sign from that in the A=4 systems. For the study of CSB interaction, we need BΛ within 100keV accuracy. For this purpose, (e,e’K+) reaction might be powerful tool. For the study of CSB interaction, (1) 4He (e,e’K+) Λ4H (2) 4He(π+,K+) 4ΛHe Maintz? Where? Possible? or emulsion experiment again? We want to know BΛ accurately in s-shell Λ hypernuclei. 10B (e, e’K+) 10Be Λ 10B(π+,K+) 10B Λ Analysis is in progress. Where? ハイペロンー核子間相互作用が分かるとその先には? 陽子+中性子+第3の粒子(ハイペロン)で構成される多体系の 新しい特徴を正確に捉えることができる。 通常の原子核では考えられなかった新しい現象を予言し、 発見、解明することができる。 物理的興味深い現象は、sd-shellにあるのでは ないか? Λ Λ 原子核 ハイパー核 原子核全体が縮む! 従来の原子核の常識を超えた新しい現象 十数年前に元場、池田、山田によって 指摘 Theoretical calculation E. Hiyama et al. Phys. Rev. C59 (1999), 2351. p n n Λ n Λ n p p n 6Li n p p p 22%原子核が縮むと予言 予言とほぼ 一致 KEK-E419実験 K.Tanida et al., Phys. Rev. Lett. 86, 1982(2001). 19%縮むことが検証 このような原子核が縮むという従来の原子核の常識を破るような 現象を予言できたのは、Λと核子の間の相互作用がほぼ確立してきたから もう少し重い原子核にΛ粒子を投入するとその構造は どのように変化するのか? For example α α + α Λ α α Λ 13C Λ 12C Shell structure Cluster structure α 共存 Example :13Λ C Λ α α 12C 0+2 Λ Loosely coupled α clustering state +0.86 0 MeV α 3α threshold Λ 0+1 Shell-like compact state -7.27 How is the structure change when a Λ particle is injected into 2 kinds of 0+ states in 12C ? The density of α―α relative motion as a function of α―α distance. α excitate-state C C α O Drastic shrinkage O ground-state C C α C No change This difference comes from the state dependence of nucleon density distribution in core nucleus. 2+2 cluster-like states 0+2 13CのB(E2)の測定をして欲しい Λ 3αthreshold 2+2 2+1 B(E2):Reduced shell-like states B(E2) 0 +1 0+ 2 B(E2):Enhanced 12C 2+ 1 α B(E2):No change 0+1 α α 13C Λ α α α Λ Schematic illustration shell-like states α-clustering states Does energy gain go in parallel way for all the states? No ! 2+ 2 0+ 2 2+ 1 2+ 2 0+2 01 + 2+ 1 A≥10 core nucleus Λ 01 + A≥11 Λ hypernucleus Energy gain by Λ-particle addition ΔE(shell-like) > ΔE(clustering) shell-like state clustering state shell-like state Level crossing A≥10 core nucleus A≥11 Λ hypernucleus For example of level crossing : 12C and 13 C Λ α α α α α 12C α Λ 13C Λ Level crossing between shell-like state and clustering state shell-like states clustering states shell-like states Level crossing 3. S=-2 ハイパー核 と YY 相互作用 What is the structure when one or more Λs are added to a nucleus? Λ nucleus Λ + Λ + Λ + Λ + ・・・・ It is conjectured that extreme limit, which includes many Λs in nuclear matter, is the core of a neutron star. Talked by Ohnishi In this meaning, the sector of S=-2 nuclei , double Λ hypernuclei and Ξ hypernuclei is just the entrance to the multi-strangeness world. However, we have hardly any knowledge of the YY interaction because there exist no YY scattering data. Then, in order to understand the YY interaction, it is crucial to study the structure of double Λ hypernuclei and Ξ hypernuclei. Recently, the epoch-making data has been reported by the KEK-E373 experiment. Observation of 6He ΛΛ Uniquely identified without ambiguity for the first time α+Λ+Λ 7.25 ±0.1 MeV 0+ Λ Λ α YY相互作用を決めるストラテジー YY 相互作用 Nijmegen model D ① 使用 ③ 比較 Spectroscopic experiments Emulsion experiment (KEK-E373) by Nakazawa and his collaborators ΛΛ Λ ダブルラムダハイパー核の構造計算 ② 6He spin-independent force の 強さを半分にするように提案 Λ α ④ 未発見ダブル ラムダハイパー核 を予言 Approved proposal at J-PARC ・E07 “Systematic Study of double strangness systems at J-PARC” by Nakazawa and his collaborators (1)スピン・パリティ 実験で決めるのは困難 (2)発見された状態は基底状態?励起状態? 少数粒子系計算法を使用した 私の役割 比較 エマルジョン実験 理論計算 インプット: ΛΛ interaction to reproduce the observed binding energy of ΛΛ6He the identification of the state Successful example to determine spin-parity of double Λ hypernucleus --- Demachi-Yanagi event for 10Be Observation of 10Be 8Be+Λ+Λ --- KEK-E373 experiment Λ Λ α α +0.35 12.33 -0.21 MeV ground state ? excited state ? 10Be 10Be Demachi-Yanagi event 4-body calculation of 10Be ΛΛ (Deamchi-Yanagi event) E. Hiyama, M. Kamimura, T. Motoba, T.Yamada and Y. Yamamoto Phys. Rev. C66, 024007 (2002) VΛΛ Λ Λ α α To reproduce the observed binding energy of ΛΛ 6He α+Λ+Λ 7.25 ±0.1 MeV The binding energies of all the subsystems in ΛΛ10Be are reproduced . Λ Λ α α Λ Λ α Λ Λ α α Successful interplitation of spin-parity of Λ Λ α α E. Hiyama, M. Kamimura,T.Motoba, T. Yamada and Y. Yamamoto Phys. Rev. 66 (2002) , 024007 In this way, we succeeded in interpreting the spin-parity by comparing the experimental data and our theoretical calculation. Demachi-Yanagi event Therefore, the 4-body calculation has predictive power. Hoping to observe new double Λ hypernuclei in future experiments, I have predicted level structures of these double Λ hypernuclei within the framework of the α+x+Λ+Λ 4-body model. E. Hiyama, M. Kamimura, T. Motoba, T.Yamada and Y. Yamamoto Phys. Rev. C66, 024007 (2002) Λ Λ x t = 7He 7Li 8Li 8Li ΛΛ ΛΛ ΛΛ ΛΛ 3He = d = = p = x n = α 9Be ΛΛ Spectroscopy of ΛΛ-hypernuclei E. Hiyama, M. Kamimura,T.Motoba, T. Yamada and Y. Yamamoto Phys. Rev. 66 (2002) , 024007 By comparing this theoretical prediction and future experimental data, we can interpret the spectroscopy of those double Λ hypernuclei. Spectroscopy of ΛΛ-hypernuclei E. Hiyama, M. Kamimura,T.Motoba, T. Yamada and Y. Yamamoto Phys. Rev. 66 (2002) , 024007 A > 11 ΛΛ hypernuclei new data (2009) I have been looking forward to having new data in this mass-number region. Observation of Hida event Λ Λ Λ Λ n n α α n α α 11Be ΛΛ 12Be ΛΛ BΛΛ= 20.83±1.27 MeV BΛΛ= 22.48±1.21 MeV Important issues: Is the Hida event the observation of 11 Be ΛΛ 12Be ? or ΛΛ Core nucleus, 9Be is well described as α+α+ n three-cluster model. 11Be ΛΛ Λ Λ n α Then,ΛΛ 11Be is considered to be suited for studying with α+α+ n +Λ+Λ 5-body model. α Difficult 5-body calculation: 1) 3 kinds of particles (α, Λ, n) Λ Λ Λ n Λ α n α α α 2) 5 different kinds of interactions 3) Pauli principle between α and α, and between α and n But, I have succeeded in performing this calculation. Some of important Jacobi corrdinates of the α+ α+ n + Λ+ Λ system. Two αparticles are symmetrized. Two Λparticles are antisymmetrized. 120 sets of Jacobi corrdinates are employed. Before doing full 5-body calculation, it is important and necessary to reproduce the observed binding energies of all the sets of subsystems in ΛΛ11Be. In our calculation, this was successfully done using the same interactions for the following 9 subsystems: Λ Λ Λ α 5He (3/2-) Λ n n α Λ Λ n α α 8Be (0+) α 9Be α (3/2-) CAL : +0.80 MeV CAL : +0.09 MeV CAL : -1.57 MeV EXP : +0.80 MeV EXP : +0.09 MeV EXP : -1.57 MeV Λ Λ n α 5He Λ α (1/2-) Λ n Λ α α 6He Λ (1-) Λ n Λ α 9Be Λ α (1/2+) CAL : -0.32 MeV CAL : -3.29 MeV CAL : -6.64 MeV EXP : -0.32 MeV EXP : -3.29 MeV EXP : -6.62 MeV (The energy is measured from the full-breakup threshold of each subsystem) adjusted predicted Λ n Λ Λ α 6He ΛΛ ΛΛ n Λ n α ΛΛ α α (0+ ) CAL (0+): -6.93 MeV EXP (0+): -6.93 MeV Λ Λ 10Be Λ (1-) CAL : -10.64 MeV EXP : -10.64 MeV α ΛΛ 10Be ΛΛ α (0+, 2+ ) CAL (2+): -10.96 MeV EXP (2+): -10.98 MeV CAL (0+): -14.74 MeV All the potential parameters have been adjusted in the 2- and 3-body subsystems. EXP (0+): -14.69 MeV Therefore, energies of these 4-body susbsystems and the 5-body systemΛ Λ11Be are predicted with no adjustable pameters. Convergence of the ground-state energy of 11Be the α+α+ n +Λ+Λ 5-body system ( ) ΛΛ 0 α+α+ n +Λ+Λ J=3/2- 11Be ΛΛ -19.81 -22.0 Exp.-22.42±1.27 CAL This event has another possibility, namely, observation of Λ n 12Be ΛΛ α 12Be. ΛΛ Λ n BΛΛ= 22.48±1.21 MeV α For this study, it is necessary to calculate 6-body problem. At present, it is difficult for me to perform 6-body calculation. Next year, I will try to do it. For the confirmation of Hida event, we expect to have more precise data at J-PARC. Spectroscopy of ΛΛ-hypernuclei At J-PARC 11Be ΛΛ , A=12, 13, …… For the study of this mass region, we need to perform more of 5-body cluster-model calculation. Therefore, we intend to calculate the following 5-body systems. Λ Λ Λ p α α 11B ΛΛ Λ α α α 14C Λ α α Λ Λ t d 12B ΛΛ Λ ΛΛ Λ α 13B ΛΛ Λ 3He α α α 13C ΛΛ To study 5-body structure of these hypernuclei is interesting and important as few-body problem. 4. Future subjects Ξhypernuclei For the study of ΞN interaction, it is important to study the structure of Ξ hypernuclei. Approved proposal at J-PARC : Day-1 experiment ・E05 “Spectroscopic study of Ξ-Hypernucleus, 12Be, via the 12C(K-,K+) Ξ Reaction” by Nagae and his collaborators K+ K- Ξ- p 11B 12C 11B Ξ hypernucleus This will be the first observation of Ξ hypernucleus 12C(K-, K+) 12Be Day-1 experiment at J-PARC Ξ- What part’s information of the ΞN interaction do we extract? VΞN = V0 + σ・σ Vσ・σ + τ・τ Vτ・τ+ (σ・σ)(τ・τ) Vσ・σ τ・τ All of the terms contribute to binding energy of 12Be ( 11B is not spin-, isospin- saturated). Ξ- Ξ- t α α 12Be Ξ- (T=1, J=1-) Then, even if we observe this system as a bound state, we shall get only information that VΞN itself is attractive. Therefore, after the Day-1 experiment, next, we want to know desirable strength of V0, the spin-,isospin-independent term. VΞN = V0 + σ・σ Vσ・σ + τ・τ Vτ・τ+ (σ・σ)(τ・τ) Vσ・σ τ・τ In order to obtain useful information about V0, the following systems are suited, because the (σ・σ), (τ・τ) and (σ・σ) (τ・τ) terms of VΞN vanish by folding them into the α-cluster wave function that are Ξ- α Ξ- α spin-, isospin-satulated. problem : there is NO target to produce them by the (K-, K+) experiment . Because, ・・・ α To produce αΞ- and ααΞ- systems by (K-, K+) reaction, K- These systems are unbound. Then, we cannot use them as targets. K+ target p Ξ- α α 5Li Ξ- 5H K+ K- Ξ- p α α 9B α Ξ- α 9Li As the second best candidates to extract information about the spin-, isospin-independent term V0, we propose to perform… K+ K- p n Ξ- n α n α n 7Li (T=1/2) 7H (T=3/2) Why they are suited Ξ- K+ K - p α 10B n α (T=0) Ξ- α n α 10Li Ξ- (T=1) for investigating V0? (more realistic illustration) n n Ξ- α 7H Core nucleus 6He is known to be halo nucleus. Then, valence neutrons are located far away from α particle. Valence neutrons n are located in p-orbit, whereas Ξparticle Ξ- is located in 0s-orbit. (T=3/2) Ξ- n Then, distance between Ξ and n is much larger than the interaction range of Ξ and n. α Ξ- α 10Li Ξ- (T=1) Then, αΞ potential, in which only V0 term works, plays a dominant role in the binding energies of these system. Before the experiments will be done, we should predict whether these Ξhypernuclei will be observed as bound states or not. Ξ- n α n 7H (T=3/2) Ξ- Ξ- n α α 10Li Ξ- (T=1) Namely, we calculate the binding energies of these hypernuclei. ΞN interaction Only one experimental information about ΞN interaction Y. Yamamoto, Gensikaku kenkyu 39, 23 (1996), T. Fukuda et al. Phys. Rev. C58, 1306, (1998); P.Khaustov et al., Phys. Rev. C61, 054603 (2000). Well-depth of the potential between Ξ and 11B: -14 MeV Among all of the Nijmegen model, ESC04 (Nijmegen soft core) and ND (Nijmegen Model D) reproduce the experimental value. OtherΞN interaction are repulsive or weak attractive. We employ ESC04 and ND. The properties of ESC04 and ND are quite different from each other. Property of the spin- and isospin-components of ESC04 and ND V(T,S) T=0, S=1 ESC04 ND strongly attractive (a bound state) T=0, S=0 weakly repulsive T=1, S=1 weakly attractive T=1, S=0 weakly attractive weakly repulsive Although the spin- and isospin-components of these two models are very different between them (due to the different meson contributions), we find that the spin- and isospin-averaged property, V0 = [ V(0,0) + 3V(0,1) + 3V(1,0) + 9V(1,1) ] / 16, namely, strength of the V0- term is similar to each other. As mentioned before, αΞ potential, in which only V0 term works, Ξ- n α n 7H plays a dominant role in the binding energies of these system. (T=3/2) Ξ- Ξ- α n α 10Li Ξ- (T=1) Therefore, interestingly, we may expect to have similar binding energies between ESC04 and ND, although the spin- and isospin-components are very different between the two. 4-body calculation of E. Hiyama et al., 7H Ξ- PRC78 (2008) 054316 ESC04 MeV 1.71 ND α+ n + n + Ξ6He 0.75 0.0 MeV 0.96 0.39 + Ξ- 1/2+ 6He 7H + Ξ- 1/2+ -1.56 7H Ξ- Ξ- In experiments, we can expect a bound state. (αΞ- ) + n + n 0.0 (αΞ- ) + n + n -1.35 α+ n + n + Ξ- α Ξ- n n Similar binding energies using ND and ESC04. Independent on employed ΞN potential MeV 5.17 3.60 0.0 ESC04d 10Li -Ξ 4-body calculation of E. Hiyama et al., PRC78 (2008) 054316 ND α+ α+ n +Ξ9Be + Ξ- (ααΞ- ) + n MeV 2.86 1.32 0.0 α+ α + n +Ξ9Be + Ξ- (ααΞ- ) + n 2 -2.96 -3.18 2 In this way,10the binding energies of Ξ hypernuclei with 10 Li Li Ξ- are dominated by αΞ potential, namely, ΞA=7 and 10 nΞN interaction(V ΞSimilar binding spin-, and iso-spin independent 0). energies using ND and Then, to get information about this part,ESC04d. we propose to perform +) experiment byα 10B targets experiments, the (KIn-,K using 7α Li andIndependent on employed we can expect 12C target. ΞN potential at J-PARC after the Day-1 experiment with a bound state. QCD 現在の S= -1, -2 の世界の 研究方針 Lattice QCD ハドロン 中間子理論 クオーク模型 YN散乱実験 極端に少ない ハイペロンー核子(YN)、 ハイペロンーハイペロン(YY)間力 私の役割 (Few-body計算法 を用いて) X よく分かっていない 多体系のダイナミクス Few-body計算 Shell 模型 Cluster模型 まずは、構造の研究から、相互作用を決めるのが、先決なのが現状 中性子星の 内部の研究 まだまだ 発展途上 最新の研究動向 QCD Lattice QCD ハドロン 中間子理論 クオーク模型 N. Ishii, S. Aoki and T. Hatsuda, Phys. Rev. Lett. 99, 022001(2007) 核子ー核子間力(NN) ハイペロンー核子(YN)間力 まだまだ荒削りではあるが、 QCDから、バリオン多体系の 構造を理解できる日が近い? 5年後、10年後のハドロン物理研究の考えられる将来像 (personal view) QCD ペタコンの導入でさらに 発展 Lattice QCD ハドロン 現実的相互作用(YN、YY、メソンーバリオン) 新しくこの矢印が生まれる! 有限温度における 多体系のダイナミクス 高密度状態の物理 (中性子星内部の研究) Shell 模型 J-PARC YN散乱実験 Few-body計算 Cluster模型 今は予想もできない現象を予言可能 チャーム核、オメガハイペロンを原子核に入れた ハイパー核、いろいろなメソンを原子核に入れた エキゾチックな原子核を予言 J-PARC 高分解能ガンマ線実験 ペタコン Concluding remark Multi-strangeness system such as Neutron star J-PARC おわり
© Copyright 2024 ExpyDoc