超短レーザーパルスによる分子量子演算の可能性 大槻幸義 東北大・院理 & CREST-JST 目的 核融合研Jan4(05) 分子分光法を使った,量子計算の(原理)実証実験法の開発 量子情報資源としての分子基盤技術の確立 目的:量子計算アルゴリズムは報告されている → 分子への実装シミュレーション 量子コンピュータ 量子 制御 化学反応量子制御 Contents 核融合研Jan4(05) Part I Introduction of optimal control theory Part II Relaxation effects on quantum control: Manipulating dissociation wave packets of I2- in water Part III Application to molecular quantum computer Key principles of quantum control 核融合研Jan4(05) Quantum control: manipulating quantum interferences |1 > + | 2 > 1 | 2 >= [ | A > - | B >] 2 | 1 >= |A> 1 [ | A > + | B >] 2 h |1 > - | 2 > shaped laser pulse |B > 1 | Φ ± >= [ | 1 > ± | 2 >] =| A > or | B > 2 Laser-field manipulation of constructive and destructive interferences of the evolving molecular wave function. Optimal control experiment (OCE) 核融合研Jan4(05) lack of the knowledge about molecular Hamiltonian (existence of experimental noises) Measurements can destroy a molecular wave function. Learning Control need minimal or even no knowledge of the Hamiltonian statistical solution search development of laser shaping techniques Optimal control experiment (OCE) 核融合研Jan4(05) closed-loop experiment adjusting control knobs learning algorithm pulse shaper molecular samples pulse Enew (t ) Wilson (97) photochemistry of dyes Gerber (98) measured coordination complexes results Bucksbaum (99) pulse propagation in liquid Motzkus (02) biological system crystalline polymer antenna complex LH2 of rhodopseudomonas acidophila Other examples of OCE’s 核融合研Jan4(05) Isolated systems complex systems charge-transfer coordination complex, ... strong-field dynamics dissociation & rearrangement of chemical bonds selective generation of high harmonics Condensed systems pulse propagation self-phase modulation application to biological systems branching ratio between intramolecular and intermolecular energy transfer processes Why optimal control theory ? 核融合研Jan4(05) It is natural to employ optimal control procedures for clarifying the mechanisms of OCE results. New Rules numerical simulations & model analyses Optimal Control Experiment Optimal Control Simulation: step 1 Design of optimal pulses step 2 Decoding of designed pulses My current research subjects 核融合研Jan4(05) Fundamentals Development of solution algorithms Relaxation effects on quantum control Applications Laser-induced surface dynamics Isotope separation Ultrafast processes including non-adiabatic transitions Molecular quantum computer Challenges Suppression of decoherence Contents 核融合研Jan4(05) Part I Introduction of optimal control theory Part II Relaxation effects on quantum control: Manipulating dissociation wave packets of I2- in water Part III Application to molecular quantum computer 核融合研Jan4(05) Part I Introduction of optimal control theory Optimal control method in wave function formalism Schrödinger’s equation ih | (t ) [ H 0 E (t ) ] | (t ) t : electric dipole moment operator E (t ) : electric field (semiclassical approximation) optimal control method (1) Introducing a target operator W to specify a physical objective. (2) Adding a penalty term due to pulse fluence in order to reduce pulse energy. (3) Introducing a Lagrange multiplier density (t ) that constrains the system to obey the equation of motion. 核融合研Jan4(05) objective functional 核融合研Jan4(05) unconstrained objective functional J (t f ) W (t f ) tf dt 0 (1) expectation value 1 [ E (t ) ]2 hA i t f Re d t (t ) h 0 (2) penalty term ih H t t (t ) (3) constraint due to the Schrödinger equation (t ) Lagrange multiplier coupled pulse design equations 核融合研Jan4(05) optimal control pulse E (t ) 2 A Im (t ) (t ) A parameter that weighs the significance of penalty the Schrödinger equation ih (t ) [ H 0 E (t ) ] (t ) t initial condition (0) 0 the equation for Lagrange multiplier ih (t ) [ H 0 E (t ) ] (t ) t final condition (t f ) W (t f ) density matrix formalism 核融合研Jan4(05) Quantum Liouville equation ih (t ) [ H t , (t ) ] ih (t ) t H t H 0 E (t ) (t ) density matrix (t ) relaxation term unconstrained objective functional t 1 f 2 J tr{W (t f )} d t [ E ( t ) ] hA0 tf d t tr{(t ) ih 0 LtT t (t )} pulse design equations density matrix formalism Double (Liouville)-space notation 核融合研Jan4(05) Definition of inner product between operators A and B A B tr ( A† B) ih (t ) Lt t (t ) ih (t ) unconstrained objective functional J W (t f ) tf d t (t ) 0 (t ) tf 1 d t [ E (t )]2 hA0 ih LtT t (t ) Lagrange multiplier density Ohtsuki, Zhu & Rabitz, J. Chem. Phys. (99) density matrix formalism 核融合研Jan4(05) Step 1 (0) (t ) L (0) (t ) M (0) (t ) E (0) (t ) t ih Step 2 ih (1) i (t ) L†(1) (t ) M (1) (t ) A Tr{(1) (t ) (0) (t )} t 2 ih (1) i (t ) L (1) (t ) M (1) (t ) A Tr{(1) (t ) (1) (t )} t 2 Step 3 (2) i (t ) L†(2) (t ) M (2) (t ) A Tr{(2) (t ) (1) (t )} t 2 (2) i (2) (2) ih (t ) L (t ) M (t ) A Tr{(2) (t ) (2) (t )} t 2 ih multiple target 核融合研Jan4(05) Minimization of the objective functional J X k (t f ) xk 2 : J1 k l J1 J2 tf d t l (t ) Rl (t ) rl (t ) 2 : J2 0 tf 1 2 d t [ E ( t ) ] hA0 : J3 The objective state is specified by a set of target operators with a set of expectation values The constraints imposed on the time behavior of certain observables on the interval Ohtsuki et al., J. Chem. Phys. (01) multiple target 核融合研Jan4(05) J1 X k (t f ) xk 2 k k X k† | (t f ) xk 1| (t f ) W | Wk Wk | k 2 ( | Wk | X k† |1 xk ) Quadruple-Space Representation inner product between double-space operators X and Y † X | Y tr ( X Y ) J1 W | (t f ) multiple target 核融合研Jan4(05) Y (t ) | Yl (t ) l (t ) Yl (t ) | ( | Yl (t ) | Rl |1 rl (t ) ) l tf J 2 d t Y (t ) | (t ) 0 Objective functional in quadruple-space representation tf J W | (t f ) d t Y (t ) | (t ) 0 t 1 f 2 d t [ E ( t ) ] hA0 with a constraint of satisfying ih | (t ) Lt | (t ) t most general formalism 核融合研Jan4(05) t | u (t ) [ E (t ) ] | u (t ) d (t ) | u ( ) t 0 tf t 1 f J I 2 Re X | u (t f ) 2 Re d t Y (t ) | u (t ) d t [ E (t ) ]2 hA0 0 tf t 1 f J II u (t f ) | X | u (t f ) d t u (t ) | Y (t ) | u (t ) d t [ E (t ) ]2 hA0 0 Y. Ohtsuki, and H. Rabitz, CRM Proceedings and Lectures, 33, 163 (2003). Y. Ohtsuki, J. Chem. Phys. 119, 661 (2003). Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004). 核融合研Jan4(05) Part II Relaxation effects on quantum control: Manipulating dissociation wave packets of I2- in water (省略) Nishiyama et al., J. Chem. Phys. (04) 核融合研Jan4(05) Part III Application to Molecular Quantum Computer Y. Ohtsuki, Chem. Phys. Lett. in press. (2005) Qubit and quantum parallel processing 核融合研Jan4(05) “classical” bit and “quantum” bit |0 | | 0 |1 binary number 3 1 21 1 20 | 3 2 |11 | 3 3 | 011 |1 | 3 4 | 0011 integer computation the number of bit basis We freely use a string of qubits and an integer with a subscript. Qubit and quantum parallel processing 核融合研Jan4(05) 3ビットの例 {000 001 010 011 100 101 110 111} 従来のコンピュータは,いずれか1つの値を表現 量子コンピュータは,8通りの値を同時に表現できる 入力 プロセッサ(CPU) 同時に8つの計算を処理できる 出力 8つの計算結果を同時に出力 量子ビット 10 13 210 1024 ビットマシン(Itanium2 16CPU相当) 213 8192 ビットマシン(Itanium2 128CPU相当) Qubit and quantum parallel processing 核融合研Jan4(05) 量子力学の重ね合わせ 量子系をシミュレーションするのに必要なコンピュータ資源は 自由度の増加とともに指数関数的に増大, Feynman(’82) 量子力学に従い動作するコンピュータの提案 1994 Shor 因数分解アルゴリズム 1996 Grover 高速検索アルゴリズム Qubit and quantum parallel processing 核融合研Jan4(05) NP問題と量子コンピュータ P(Polynomial) :従来の決定論的なコンピュータで解ける NP完全問題(Non-deterministic Polynomial): 非決定論的コンピュータ(仮想マシン)を用いれば 多項式時間で解ける ・巡回セールスマン問題 ・充足問題,... 量子コンピュータはNP問題を解くことができるか?←未解決 因数分解はNP問題ではないらしい... Qubit and quantum parallel processing 核融合研Jan4(05) Example of fundamental gate Hadamard transform H | 0 1 2 (| 0 |1 ) U f | x n | y | x n | f ( x) y protocol parallel processing | 1 n1 | 0 n | 0 binary sum 1 0 1 1 1 0 output/ input/ control bit target bit | 2 n 1 H n I | 1 n 1 1 2 (| 0 |1 ) L 1 2 n 1 2 1 (| 0 |1 ) | 0 n 1 2 1 | 3 n 1 U f | 2 n 1 | x n | f ( x) n2 2 x 0 2 n2 | x n | 0 x 0 idea of quantum computation 核融合研Jan4(05) quantum algorithm: constructive interference at a position corresponding to a solution. All the operations are reversible (unitary). (Wave packet corruption due to measurements is often utilized.) A solution is obtained with high probability schematic illustration of quantum computation Purpose 核融合研Jan4(05) Numerically study molecular quantum computation using qubits that are implemented in the vibrational states of I2 Optimally designed pulses are shown to act as universal gates through a case study of the simulation of the Deutsch-Jozsa algorithm. vibrational states as qubits 核融合研Jan4(05) example of the mapping in 2-qubit case I2 B state v 16 0 0 v 17 0 1 v 18 1 0 v 19 11 gate pulse mapping X state intramolecular states qubits vibrational states as qubits 核融合研Jan4(05) gate operations acting upon the mapped qubits Qubits are realized by a set of independent spins. qubit qubit O qubit 1-qubit operator acts on each subspace Qubits are realized by multilevel systems. L M O L M 1-qubit operator acts on the whole space vibrational states as qubits 1 qubit a b A1(1) c d 2 qubits A(1) 1 0(1) 3 qubits n qubits A1(2) 核融合研Jan4(05) matrix representation of 1-qubit gates a 1(1) 0(1) (2) A 2 (1) (1) c 1 A1 A1(3) A(2) 1 0(2) A1( n) A( n 1) 1 0( n 1) 0(2) (3) A(2) A2 2 0(2) A1(2) ( n 1) 0 ( n 1) A1 ... b 1(1) (1) d1 (2) a 1 0(2) (3) A3 c 1(2) A(2) 2 A (nn ) a 1( n 1) c 1( n 1) b 1(2) (2) d1 b 1( n 1) ( n 1) d1 The Deutsch problem 核融合研Jan4(05) Consider certain global properties of functions on n-bit binary numbers: a set of binary numbers function Xn (0,1)n {| 0 n , |1 n , L ,| 2n 1 n ,} f : Xn {0,1} balanced: the number of times the function returns 0 is equal to the number of times the function returns 1. constant: f : Xn {0} or {1} The Deutsch problem Given a function that is either balanced or constant, determine which type it is. Deutsch-Jozsa algorithm (2-qubit case) A classical algorithm requires that f be evaluated for 2n-1+1 核融合研Jan4(05) values. A quantum algorithm requires only one evaluation of f . (1) Step 1: Initial preparation |1 2 | 0 2 | 00 (2) Step 2: Applying the Hadamard transformation to (1) 2n 1 1 1 | 2 2 H 2 | 1 2 (| 0 |1 ) (| 0 |1 ) n 2 | x n 2 2 2 x 0 (3) Step 3: function evaluation via the f-controlled gate, U f U f | x n (1) f ( x) | x n | 3 2 U f | 2 2 1 [(1) f (0) | 0 2 (1) f (1) |1 2 ( 1) f (2) | 2 2 ( 1) f (3) | 3 2 ] 2 Deutsch-Jozsa algorithm 核融合研Jan4(05) (4) Step 4: Applying the Hadamard transformation to (3) n n 1 2 1 2 1 | 4 2 H 2 | 3 2 (1) f ( x ) x y | y n 2 2n 2 x 0 y 0 binary inner product: x y x0 y0 x1 y1 | x 2 | x1 x0 , etc. (5) Step 5: observation | 00 | 4 2 |2 balanced: 0 1 | (1) f (0) (1) f (1) (1) f (2) (1) f (3) |2 16 constant: 1 1 1 H | x0 1 2 [ | 0 (1) x0 |1 ] 1 2 (1) x0 y0 | y0 2 2 y0 0,1 1 1 H 2 | x1x0 1 2 [ | 0 (1) x0 |1 ] 2 2 (1) x0 y0 x1 y1 | y1 y0 2 2 y0 , y1 0,1 Equations of motion quantum Liouville equation ih 核融合研Jan4(05) (Liouville-space notation) (t ) [ H E (t ), (t ) ] ih (t ) (t ) [ L ME (t )]| (t ) t system Hamiltonian H electric dipole interaction laser fields E (t ) dipole moment operator time-dependent relaxation operator (t ) Liouville-space time evolution operator | (t ) G (t ,0) | (t 0) G (t ,0) | 0 ih G (t ,0) [ L ME (t )]G (t ,0) t Optimal-gate-pulse design 核融合研Jan4(05) An optimal-gate-pulse maximizes the following objective functional for an arbitrary initial state: t 1 f 0 0 2 J W | G (t f ,0) | d t | E ( t )| hA 0 gate operator penalty due to fluence Specifying the independent matrix elements by {j}, we introduce a modified objective functional: J j f j W 0j | G (t f ,0) | 0j weight factor tf 1 2 d t | E ( t )| hA 0 Pulse design equations 核融合研Jan4(05) Optimal laser pulse i E (t ) A f j W 0j | G (t f , t ) MG (t ,0) | 0j 2 j Introducing the auxiliary density { | j (t ) } ih | j (t ) [ L† ME (t )] | j (t ) t with a final condition | j (t f ) | W 0j non-Markovian effects: Y. Ohtsuki, J. Chem. Phys.(03) Markovian dissipation: Y. Ohtsuki et al., Chem. Phys.(03) Hadamard transform in 1-qubit case 核融合研Jan4(05) 1 qubit obtained by the mapping I2 B state v 16 0 v 17 1 gate pulse X state computation ・24 vibrational states ・Runge-Kutta-Fehlberg method Hadamard transform in 1-qubit case 核融合研Jan4(05) 9 E(t) (10 V/m) 1.0 High fidelity:99.8% 0.5 0.0 A modulated structure suggests the importance of phase control. -0.5 -1.0 0.5 Medium fidelity:97.8% 9 E(t) (10 V/m) 1.0 0.0 -0.5 -1.0 0 500 time (fs) 1000 Hadamard transform in 1-qubit case 核融合研Jan4(05) H1 fidelity (%) 100 The gate pulse designed with high accuracy can achieve a correct transform even after ten successive operations. H5 95 H10 100 fidelity (%) 80 The accuracy is reduced rapidly with the increase in the number of gate operations. H1 60 40 20 H5 0 -1 1 H10 0 coefficient of the |0> state 1 1 | | 0 1 2 |1 When using a pulse that lacks extreme precision, it will be safe to avoid using the pulse several times. Simulating the Deutsch-Jozsa algorithm 核融合研Jan4(05) 2 qubits obtained by mapping I2 B state v 16 0 0 v 17 0 1 v 18 1 0 v 19 11 numerical procedure gate pulse X state Applying the Hadamard transform pulse to the qubits in which either the constant state or one of the balanced states is encoded by an oracle pulse. Simulating the Deutsch-Jozsa algorithm 核融合研Jan4(05) examples of oracle pulses Hadamard transform pulse 5 0 constant 100% population in |00> balanced no population in |00> otherwise 25% population in each states 5 8 E(t) (10 V/m) -5 0 -5 5 0 -5 0 500 time (fs) 1000 Simulating the Deutsch-Jozsa algorithm 核融合研Jan4(05) constant balanced balanced balanced 0.3 population population 1.0 0.5 0.2 0.1 0.0 0.0 |00> |01> |10> |11> computational basis balanced & constant |00> |01> |10> computational basis other cases Universal computation can be realized by combining optimally designed gate pulses. |11> CNOT pulse time evolution of populations of computational basis 核融合研Jan4(05) 9 E(t) (10 V/m) 2 greater than 99% 0 -2 population 1.0 The CNOT gate can be realized by using only one pulse even in a multilevel system. 0.5 0.0 0 500 time (fs) 1000 summary 核融合研Jan4(05) We have investigated the possibility of molecular quantum computation using the vibrational states of I2, in which we have introduced qubits by mapping the computational basis onto the vibrational states in the B state. The matrix representation of a 1-qubit operator is derived in an n-qubit case. We have numerically shown that the optimally designed gate pulses act as universal gates through a case study of the Deutsch-Jozsa algorithm in a 2-qubit case.
© Copyright 2024 ExpyDoc