テ{ チM ァ ・ 製 -½Y ヒY ノ{Z診«Y | ] ½M フiPe チ ハfィソ ノZナ ハ フ」 { ーヒチ ョヒ

'()*( +,"%-.( +" !"#$%&
111- 133 :";<= 81389 29*" 844 45"67 81,23" /"0
@'()*( +,"%-.( A75 )B '> )9CDE  F-<3 +"4,5>)& ?)%!
FGH)9I ,)J*5 K*
&'($)*+ ,!-#./ 01   !" !#$%
89/9/16 :#$%&  89/3/29 :!" 
+5"9NOB '()PNQ R0SE +,"%-.( A75  +L)3( ?)%! M9B GB(5 J#*( 1I5 B
"NB U(AV )  -7(A3 F3"OJ* W*"-3 :"XY"G! M*( "!( @Z0(-&)T 5(). F05)B ,5S!
"N[#*( 2N\  NXY"G! ,5S! +"5SQV 8/A! +")9]-! 8XY"G! F3"!^ 45, B \SE
:"9NN_)& 8ANN75 :"9NN_)& FNN#X* 8NN#9!^ MNN*(5, ,SNN\S! 9NN_)& 5"NN[` ^( FNNJ*
MN*( 5, .AN3(4,)V A9*DE (5 +,5SH^"B :"9_)& "*  F*"a#H :"9_)& 8F*S\&)=
M*( b"0( )B .19*"63 'S!^> (5 '()*( 5SQV 5, A75 :"9_)& 19(SHF! 8
"NB 5Sd#! M*AB .,S7F! +,"%-.( A75 c\S! +L)3( ?)%! 5, *(2&( :"9_)&
 +,"N%-.( AN75 NGB(5 (STR) 1*e! /"f-3( FGH)9I 'S90)T5 /A! ^( 4,"<-0(
5()N. FN05)B ,5S! (5 1386- 1352 45, 5, '()*( 5, F-<3 +"4,5>)& ?)%!
+"N4,5>)N& ?)N%!  +,"%-.( A75 GB(5 V A,F! '"Q3 "-&"* .19,F!
+,"%-.( A75 GB(5 U"d3 , ) 5,  4,SB F!"d3 , 5"-H"0 +(5(, '()*( 5, F-<3
5, F<#! g"hE5( M*( :A7 8M6_ 5, .Z0(4,SB F<#! F-<3 +"4,5>)& ?)%! 
MN*( ',SNBFN<#! .Z0( )-T52B ,S7F! i!"7 (5 1362- 1353 45, V /( U"d3
)N9hXE +L)N3( ^( 4,"<-0( 5, F*(5"V"3 ,S\ )B +A"7 '(S#j B '(SE F! (5 GB(5
NGB(5 KN* ,S\ )B F#h! A75 :"9_)& W*"-3 M*( b"0( )B 8M*( )B '2&( .,S63
.,S7F63 A9*DE '()*( 5SQV 5, +L)3( ?)%!  +,"%-.( A75 M9B Zha!
.673 $889 *:;<$8= ->'() *+,$, *-"./0, (1 *-2$3, 4$.) :+A9$V +"4L(
.Q43 *O13 *C22 :JEL +A#Bfhm
[email protected]
[email protected]
.@$A BCD3," "./0, BE$F "/?,
.@$A BCD3," -@K)3$L E -"./0, KM?I (1,:?G1H -IJD3,"
44 45"67 1,23" /"0 '()*( +,"%-.( +" !"#$%& 112
!Af! .1
ST1 KTL (T8NI (TGU$! " :VTW, -T>B"O3 P, :Q +,IGR KL -2$3, -"./0, -> 8NM! $/D8L "
-2$3, 4$.) [8L \A, BI]3 +,$CD>E^& K0_R "I) -> XIYI) P, :Q Z8N" [8S> KL ."E:)
*B(1a$;) KH :>K$73 E B(16J3, 83" " +IGH KH :MN;) `?, $L .?, -"./0, (1 E
@T83 +,$, " ."," :M;0 $73 b> -E $L >$89/) [, -,%F$c, BI]3 E 8VR Od BL" +,I:S3
6TJ3, -"T./0, (T1 E -2$T3, 4$T.) [8TL KT;L, [88M -,$L *:;< ->(GU$! K& $L :MN;)
BIT]3 E :3T)P (T3E P, :LI< e$f gMN;) [, Kh $F, ?, +U KdI ZL0 K/Q3 ), i?, B(1
-,%TF$8cj KTH T8M0,E [T, [/!$F B("3 ), *(3"EU ?"KL b> -E >$89/) [, -,%F$8cj
h" , -"./0, +,$8Fb8S. ?, [QS) *(1L +kQ (3,I:S3 B,IS> b> -E $L >$89/) [,
.(GH BA/1,
E -"T./0, (T1 [8TL KT;L, (STR) 1bT_) 'f/3, :;<$8= +I8?$F '() L l>E^& [, "
,$T0 :T?$L "IT) , (T1 g8TY$! `T?, $TL -2$T3, mTAG) +,ITGR KL :/n3 -> B"EU$! 4$.)
K/<T? @TS/) $TC" -T>l>E^T& P, , l>E^& [, Z8N" (Gh KL STR #E P, B"n/?, .b,B","
:?,
Z(TM KN"M) E "," b/k8? 8MYE KL :C/kL -"./0, (1 E -2$3, 4$.) [8L K;L, .1
" "T./0, KTH (T1LK/T1," :/8MYE E 673 KL :C/kL E B"IA3 Lc (3,I:) O3U [8L I&
'() KH "$8F ,$0 $73 () KG8)P [, " gMN;) " (L K/Q3 [, *[,$LGL ."," ,$0 +U
."," , $), [, +"IS3 p]N 8VL0 STR
'(T) qT?I ,@T3E" gITW KL -/<? ->kQ1  >673 " $889 STR '() " .2
KT3F,(d :T?$L T E :)IT>I) $T89/) +"$TH",E KTL -PT83 *[,$LGL ."I1:) rsD)
.k83 -/<? kQ1
, 6T73 $T889 +T)P E gTM!" ",(TM +"$THrsTD) 8VL0 KQG, $L BE_R STR '() .3
.(>" +D3 @83 , $C" 673 KL 673 t P, 'f/3, R$? *","
lsL *l>E^& g8L", 'E, lsL " K)(f) +8L P, u& :?,B(1 b87G lsL 4 " KMN;) [,
E -$T8FKTJ8/3 :3& lsL " O3 " E :L$J ->K/! 6I? lsL *l>E^& :?G1#E 6E"
.b,B"$H a$;) , >"OGD8&
1. Smooth Transition Regression
113 ... '()*( +,"%-.( A75 )B '> )9CDE  F-<3 +"4,5>)& ?)%!
 :"9B,( .2
+)d3 F3"h! .1-2
l,@T!, " -2$T3, KTQG, KTL KTdI TL ."," >IDH -"./0, KM?I E (1 " :SO) lf3 -2$3,
+3,""./0, *(GH:) -PL , :??, :Df3 ",$!, :F(3P ->,(3/?, E (8NI Z),IR -EB$OL v;?
`T?, $TL 1.(T3,B"$TH (T8Hj -"./0, KM?I E (1 E -2$3, 4$.) [8L wGCG K;L, "IdE $L
E (T8NI mLT xT$y P, -"./0, (1 E -2$3, 4$.) [8L K;L, [, Z8V] *-"./0, +_H g8L",
bO) B"O3 t +,IGR KL -2$3, KH e8$ [(L .?, $k8) "./0, ZH -Yf E KY$R ->:G]G)
'Tf/3, TL ."I1:) $JG) (8NI mL -{L S? KL 'f/3, KL +U l,@!, E B(1 zIk]) (8NI mL "
+"ITA3 -"ITSR |$T! TL E B(T1ZTf/G) T?, S? KL (AS) "./0, ZH KY$R :G]G) (8NI mL
2
.(L:) l,@!, :N"M ()U" E (8NI *(AD) ZH -Yf :G]G)
->K$73 " -"./0, (1 $L -2$3, 4$.) ,%F$8cj lf3 1970 '? :/n3 +,$]L P, l8& 
*TH -E$T83 P, :MLT -"T./0, (T1 T>t8?_HI}3 (8NI mL xL;) .(1 K/!$F B("3 -"./0,
(T8NI " -E$TY B"TO3 tT +,ITGR KL -2$3, lf3 KL +U " KH ?, -2INIGQ v;? E K)$?
(T1 " -2ITNIGQ lTf3 +","+TD3 -,$TL ZH -EB$OL Z)R P, mL [, " .?,B(D3 -,B1,
-T>$89/) qT?I KTH T?, -"./0, (1 P, :DsL ZH -EB$OL Z)R) "I1:) B"n/?, -"./0,
-,$TL B"," tT +,ITGR KTL -2$3, *BPE$), '~ [, L .(?,B(D3 B"," v8YI K)$? E H -E$83
+3,""T./0, T (T1€TRL 1970 'T? :T/n3 +,$T]L ."I1:) zIk]) gE$Y t (8NI ,$S/?,
" .(TGGH a$T;) K)$T? E TH -E$T83 -T>B"O3 GH " bO) (8NI Z)R t +,IGR KL , -2$3,
-$TbO) lf3 -2$3, 2000-1981 BE" -,$L KH "," +D3 (1 6J3, 3IEA q?I KH KMN;) t
4
.?, B"$H -PL KM?I '~ " ->IDH -"./0, (1 " $C" ->$89/) KL Ak3 ,
-2$T3, ,%TF$8cj lf3 $L +3,""./0, $? P, l8L (1 :Q@8!I8L -ICN, ,(!$y +3,""./0,
g(T1 KTL -"T./0, (T1 *(T1 :Q@8!IT8L -ICN, " .(3,B"$H (8Hj >IDH -"./0, (1 "
4$T.) KTL "T./0, :C/kL,E +,@8) KL :C/kL $8cj [, g(1 +,@8) KH "," ,$0 -2$3, $8cj ]
ZT),IR K)$T? E TH -E$T83 KTH T?, [T, +3,""./0, P, BE$F [, '{(/?, `?, ."," -2$3,
1. Adnan Hye and Riaz, (2008), p. 45
3. International Energy Agency
4. Erbaykal, (2008), p. 172
56 .‚ *(1388 )*+,QS> E -"IAOL .2
44 45"67 1,23" /"0 '()*( +,"%-.( +" !"#$%& 114
(T1 ZT)R [$bO) -2$3, *[,$LGL .(3," P83 -2$3, 4$.) KL B"n/?, -,$L KH (G/k> -, K;?,E
1
.?, -"./0,
-"TT./0, (T1 E -2$T3, 4$T.) [8TL KT;L, :T?$L KTL KTH , :T>K8TY$! *:TVH ITy KTL
-T>K8TY$! *2(T1 -T>K8TY$! :P, (TGAR KTH "$TH b8Tkf K/T?" TOh KTL +,I :) *(3,K/<,"$&
-"T./0, (T1 -T>K8TY$! xLT;) 5.:TƒG< -T>K8TY$! E 4-"I<PL ->K8Y$! *3:IdK!$W
$TL b8f/k)$8= E b8f/k) gIW KL -"./0, (1 " B(GGH[88M KnN„) t +,IGR KL -2$3, 4$.)
KTH :>?8? *>K8Y$! [, `?, $L .",%F:) $c, K)$? -"IdI) E H -E$83 (8NI Z),IR
`T?, $TL .(T3," -"T./0, (T1 $TL :LIV;)T3 $Tc, (3I1:) …s, -2$3, 4$.) l>H 4(> L
(G3,I:) *(3I1:) :~,$y -2$3, 4$.) l>H 4(> L KH :>?8? :IdK!$W ->K8Y$!
K;L, t "IdE $L >K8Y$! [, KH ?, Z8N" [, KL [, .(1L K/1,(3 -"./0, (1 $L :nG) $8cj
KTL -"I<PL ->K8Y$! *ZLf) " .(3," (8Hj -2$3, 4$.) KL -"./0, (1 P, K!$yt :VR
KTH (TGGH:T) +8L E K/1," (8Hj -2$3, 4$.) E -"./0, (1 [8L K!$yE" :VR K;L, t "IdE
xLT;) *TO3 " .(T3,%F:T) $8cjT bT> -E $TL +)Pb> Iy KL -"./0, (1 E -2$3, 4$.)
+,,(T!$y E [T, P, ."," -"./0, (1 $L :H(3,  $nW $8cj -2$3, 4$.) *:ƒG< ->K8Y$!
:TnG) $8cj -2$3, :IdK!$W ->?8? KH (3,B(8fR [, $L :/8Aƒ ->K8Y$! (G3) >K8Y$! [,
(T1 E -2$T3, 4$T.) [8TL :VR K;L, "IA3 $L :ƒG< ->K8Y$! *m0,E " .",(3 -"./0, (1 $L
KTH :>ITDH " $/TD8L -"T./0, (T1 -T>K8TY$! KTH T?, :TG/nF 6.(T3," (T8Hj -"./0,
4(T> TL KTH :T>T?8? …Ts, *[,$LTGL .(T1L:T) †"TW *?, $/D8L -2$3, KL O3U :C/kL,E
*[STY " .(GH:) t$] , >IDH [, -"./0, (1 "I1:) …s, -2$3, 4$.) " l,@!,
$T/SH -2$T3, KTL TO3U :C/kL,E +,@8) KH ?, †"W :>IDH " $/D8L :IdK!$W ->K8Y$!
7
1. Tsani, (2009), p. 2
2. Growth Hypothesis
3. Conservation Hypothesis
4. Feedback Hypothesis
5. Neutrality Hypothesis
6. Belke et al, (2010), p. 4
7. Nondo et al, (2010), p. 5
.?,
115 ... '()*( +,"%-.( A75 )B '> )9CDE  F-<3 +"4,5>)& ?)%!
FB)nE :"XY"G! #9Q9 .2-2
-8TTkL +,$CTD>E^& KTTdI "IT) PTTL$" P, -"T./0, (T1 E -2$TT3, 4$T.) [8TTL KT;L, KTMN;)
."$THB1, (1978) 1!,$H E !,$H KMN;) KL +,I:) gMN;) [, [$:S(0 P, KH K/!$F,$0
" TQ$)U " -"T./0, (T1 E GDP [8TL :VR K;L, :?$L KL "I< KMN;) " !,$H E !,$H
GDP P, KT!$yt :VR K;L, t KH "," +D3 O3U ->K/! .(G/<,"$& 1874-1947 :3)P BE"
KT;L, :T?$L KTL ITDH ‡< " -"P gMN;) >(ML ."," "IdE Q$)U " -2$3, 4$.) KL
*KTMN;) "IT) :3T)P BE" KTL KTdI TL gTMN;) [T, P, 6 ,(TH $T> KH (G/<,"$& $89/) E" [, [8L
:TGM *KTG8)P [," "IdI) K8Y$! Oh P, :Q OG, @d E KMN;) "I) ->IDH *'() ->$89/)
" gMN;) [, P, -",(M .(3,B"$H (8j , -"I<PL  E :ƒG< *:IdK!$W *(1 ->K8Y$!
"IT) tT8GQ E #E *KTMN;) "IT) ->ITDH T ITDH *:3T)P BE" KL KdI L IDH ‡<
1 'E(Td eN0 " , +U ˆ/3 KH *(3,K/!$F ,$0 Z8V] E K@J "I) B(1#,@F ˆ/3 E B"n/?,
.b,B"$H K‰,,
E KT/<,"$& -"T./0, (T1 E -2$T3, 4$T.) [8L K;L, :?$L KL :MN;) @83 IDH Z<," "
:T?$L KTL (1376) -"TA0 .(T3,B"$TH #,@TF , :En/) ˆ/3 :?$L "I) BE" E #E KL K/kL
E KT/<,"$& $J3$F 8VR t8GQ P, B"n/?, L -"./0, (1 E -2$3, 4$.) [8L g()BIH K;L,
bT> $TL 'kQ P, $/SH :3)P KVW! " K!$y E" 8VR K;L, t ()U" E -2$3, KH (>":) +D3
E B"$TH (T8j , $89/) E" [8L g()(GVL K;L, t "IdE :C/1A3,b> K;L, :?$L L -"A0 .(3,"
6,(TH $> -,$L g()(GVL '"M -I? KL H$~ E Z(M R$? ;< v8]. '() P, -$8FB$OL L
T;< v8]T. -ITCN, P, B"n/?, L (1380) :n;.) E :SD$L, .?, B"$H KA?]) , >$89/) P,
-1338 BE" " +,$T, " :T/n3 B(TSR -T>B"EU$T! 4$.) E -"./0, (1 [8L K;L, :?$L KL
rNT<3 (T8NI KTL :T/n3 B(TSR -T>B"EU$T! 4$.) P, :ŠVR K;L, (3,B"," +D3 E K/<,"$& 1378
.",(3 "IdE g()BIH " :V<,"
1. Kraft and Kraft
44 45"67 1,23" /"0 '()*( +,"%-.( +" !"#$%& 116
5SQV o5"H  iH(, 5, -&)T:5S= FB)nE :"XY"G! =eH .1 /A\
ˆ/3
4$.) E -"./0, (1 [8L K!$y E" :VR K;L, t
-2$3,
"IdE -2$3, 4$.) S? KL (8NI P, :VR K;L,
.k83 (8NI :VR K;L, -2$3, 4$.) :NE K/1,"
t8GQ E #E
KMN;) "I) ->IDH E BE"
+,$CD>E^&
$J3$F 8VR
(1993- 1955) +,I
Hwang and
Gum (1992)
I‰k8> 8VR
(1955- 1993) +,I
Cheng and Lai
(1997)
ECM E $J3$F - ZC3,
(1985- 1950) {S,IF
Nachan et al
(1998)
$J3$F 8VR
(1948- 1994) Q$)U
Stern (2000)
$J3$F 8VR
(1997- 1954) +,I
Yang (2000)
$J3$F 8VR
(1961- 2000 ) B$H
Glasure (2002)
(1970- 1999 ) B$H
Oh and Lee
(2004)
(1953- 2002) [8h
Zou and Chau
(2005)
"IdE E K3,$? :M0,E GDP $L -2$3, 4$.) Aƒ) $c,
KL K3,$? -2$3, 4$.) P, K!$y t 8VR K;L, t
K3,$? :M0,E GDP
(1 KL -2$3, 4$.) P, K!$y t :ŠVR K;L,
-"./0,
4$.) E -"./0, (1 [8L K!$y E" :VR K;L, t
-2$3,
GDP E -2$3, 4$.) [8L K!$y E" :ŠVR K;L, t
lf3 n3 S80 KH :N~ " *"," "IdE
.(GH:) -PL , -,B(GGH[88M
(1 KL -2$3, 4$.) P, K!$y t :ŠVR K;L,
-"./0,
$J3$F 8VR
*GDP E n3 4$.) [8L :C/1A3,b> K;L, "IdE
->BE" -,$L g()(GVL " K!$yE" :VR K;L, "IdE
:VR K;L, "IA3 *2002- 1985 E 1984- 1953 :3)P
E :C/1A3,b> t8GQ
K;L, "IdE E 1984- 1953 BE" " g()BIH "
$J3$F 8VR
-,$L g()BIH " GDP KL n3 4$.) P, :VR
2002- 1985 BE"
K;L, "IdE *IDH 9 " :C/1A3,b> K;L, "IdE
*IDH 6 " :Q$/QN, -2$3, 4$.) KL GDP P, :VR
E :C/1A3,b> t8GQ
:f$!U IDH 17
GDP KL :Q$/QN, -2$3, 4$.) P, :VR K;L, "IdE
$J3$F 8VR
(1971- 2001)
Rufael (2006)
IDH 3 " K!$yE" :VR K;L, "IdE E IDH 3 "
E GDP E -2$3, 4$.) [8L :C/1A3,b> K;L, "IdE
E :C/1A3,b> t8GQ
-2$3, 4$.) KL GDP P, K!$y t :VR K;L, t
$J3$F 8VR
(1970- 2003) K8H$
Lise and
Motfort (2006)
" -2$3, P, $/D8L B"n/?, Z8N" -"./0, (1
" *(1L:) 3)& E ",INkN, *Q/?H ->IDH
*K‰IF,Q83 *`,E(G> ->IDH " KH :N~
:M0,E GDP $L :H(3,  $nW $8cj -2$3, 4$.)
.?, K/1,"
(ML K]nW " K),",
t8)G" Z3&
*3)& E ",INkN, *Q/?H
K‰IF,Q83 *`,E(G>
Chontanawat et
al (2006, 2008)
117 ... '()*( +,"%-.( A75 )B '> )9CDE  F-<3 +"4,5>)& ?)%!
5SQV o5"H  iH(, 5, -&)T :5S= FB)nE :"XY"G! =eH .1 /A\ !(,(
ˆ/3
t8GQ E #E
KMN;) "I) ->IDH E BE"
+,$CD>E^&
:C/1A3,b> t8GQ
(1970- 2003) K8H$
Erbaykal
(2008)
(1971- 2007) +/kH&
Adnan Hye and
Riaz (2008)
" n3 E :Q$/QN, -2$3, E" 4$.) Aƒ) $c,
-2$3, 4$.) Aƒ) $c, E -"./0, (1 $L g()BIH
-2$3, 4$.) :nG) $c, E -"./0, (1 $L n3
.g()(GVL " -"./0, (1 $L :Q$/QN,
E" [8L g()BIH " K!$yE" :VR K;L, t "IdE
KL -2$3, 4$.) P, K!$yt :VR K;L, t E $89/)
E :C/1A3,b> t8GQ
4$.) :nG) -,%F$c, *g()(GVL " -"./0, (1
$J3$F 8VR
.g()(GVL " -"./0, (1 $L -2$3,
4$.) KL GDP P, K!$yt :VR K;L, t "IdE
4$.) " -(W" 0/509 l,@!, E ZH -2$3,
8VR E VAR '()
" -(W" t l,@!, $c, " 6, t BE" ZH -2$3,
$J3$F
(1953- 2005) :?,E$H
Gelo (2009)
(2006- 1960) +3I
Tsani (2009)
.6, t-1 BE" GDP
ZH -2$3, 4$.) P, K!$y t :ŠVR K;L, t "IdE
4$.) P, K!$y t :ŠVR K;L, t *:M0,E GDP KL
K;L, "IdE 6(R E GDP KL :/MGW E :C3< -2$3,
II)) E ,"I
ZS~ lsL " :M0,E GDP E -2$3, 4$.) [8L :VR
.Zf3 E
*:M0,E GDP [8L :C/1A3,b> K;L, t "IdE
-E$83 E rN<3 Lc K)$? Z8QD *-2$3, 4$.)
4$.) P, K!$yt :VR K;L, t "IdE *H
K;L, t E g()BIH " -"./0, (1 KL -2$3,
" -"./0, (1 E -2$3, 4$.) [8L K!$y E" :VR
.g()(GVL
*`E_L *+JL…U *+/kG),
:C/1A3,b> + I)PU
*+/?@80$0 *+/k0,@0 *+3I
v8]. '() E :3E(&
*+/kQ8d *K8?E *-E,(NI)
(ECM) ;<
+/kQLP, E [,$H,
Apergis and
Payne (2009)
(1991- 2005)
" rN<3 (8NI E :/n3 ->B"EU$! 4$.) [8L K!$y E" :ŠVR K;L, t (G>":) +D3 *[8G‹S>
TT8VR KTT;L, :TT?$L KTTL -,KTMN;) " (1383) [TTk]) `TTAR E B",PTTJ3 ."," "ITTdE g(T)(GVL
#E P, B"n/T?, TL 1381-1350 BE" " +,$T, " -"T./0, -T>lsL (1 E -2$3, ->Z)~
-T>ZT)~ 4$T.) [8TL KT!$y E" :ŠVR K;L, t (>":) +D3 O3U ˆ/3 .(G/<,"$& I‰8D> 8VR
T8VR KT;L, :T?$L KTL (1384) X,P E [T)U ."," "ITdE -"T./0, -T>lTsL (T1 E -2$3,
E" P, B"n/T?, TL 1381 -1346 -T>'? " +,$, " -"./0, (1 E -2$3, 4$.) [8L -$J3$F
T8VR KT;L, tT "ITdE #E E" $T> ˆT/3 .(T3,KT/<,"$& T;< v8]. E 1II)) E ,"I #E
B"n/T?, TL *[SY " .(GGH:) (8j , :M8Ay PF 4$.) KL -"./0, (1 P, K!$y t -$J3$F
1. Toda and Yamamoto
44 45"67 1,23" /"0 '()*( +,"%-.( +" !"#$%& 118
[8TL (g(T)(GVL E g()BIH ")K!$y E" -$J3$F 8VR K;L, t "IdE ;< v8]. #E P,
II)T) E ,"IT #E ˆ/3 `?, $L KH :N~ " .(3$8F:) KJ8/3 , -"./0, (1 E †$L 4$.)
E -"ITAOL ."," "ITdE -"T./0, (1 KL †$L 4$.) P, K!$y t -$J3$F 8VR K;L, t OG
-TYf K;L, :?$L KL ;< v8]. -ICN, E $J3$F 8VR #E P, B"n/?, L (1385) +,QS>
(3$8F:) KJ8/3 E K/<,"$& 1383-1346 BE" " +,$, " -"./0, (1 L -2$3, -,K;?,E E :O3
KTH :NT~ " i"," "ITdE -"./0, (1 KL -2$3, :O3 -Yf P, K!$y t :ŠVR K;L, t KH
E -"ITAOL .T?, K!$y E" :VR K;L, t -"./0, (1 E -2$3, -,K;?,E -Yf [8L :ŠVR K;L,
TL , 1384-1346 BE" " +,$T, " -"T./0, (T1 E -2$3, 4$.) [8L K;L, (1388) +,QS>
KTD -T>+IT)PU P, B"n/T?, TL /?, [, " .(3"," ,$0 :?$L "I) -/<? kQ1 $L (8Hj
:TMSdbT> +IT)PU [8G‹S> E ,@3E" ZQ1 KL -/<? g,$889 [88M -,$L 1PE(3, -gIP (~,E
KH (G>":)+D3 -/<? kQ1 $L (8Hj L g()(GVL K;L, :?$L I7G) KL 2[kG> --IC$F
+,TQS> E B")U ."," "IdE +,$, -"./0, (1 E -2$3, 4$.) [8L Aƒ) g()(GVL K;L, t
-ITTCN, [8TTG‹S> E (ARDL):MPITT -TT> KTTn0E TTL :/TTDFPL"I< -ITTCN, P, B"n/TT?, TTL (1388)
4$T.) E -2$T3, :TO3 4$T.) [8TL g()BIH E g()(GVL K;L, "IdE *(ECM) ;< v8].
-T>'T? " +,$T, "T./0, ŒTV/s) -T>lTsL '9/1, E -"./0, (1 E -2$3, ->Z)~ :O3
E g(T)BTIH T8VR KT;L, tT "," +TD3 TO3U ˆT/3 .(T3"," ,$T0 :?$L "I) , 1382-1350
"ITdE -"T./0, (T1 KTL †$TL -2$3, :O3 4$.) E -2$3, :O3 4$.) P, K!$y t g()(GVL
:TM8Ay PTF :TO3 4$T.) KTL -"T./0, (1 P, @83 K!$y t g() BIH 8VR K;L, t .","
KTL MGTW lsL " -2$3, :O3 4$.) P, K!$y t 8VR K;L, t *[, $L +E@!, ."," "IdE
P, g(T)(GVL E g()BIH 8VR K;L, t *[8G‹S> ."," "IdE lsL [, " B"E@!, #P, (1
."," "IdE lsL [, " B"E@!, #P, (1 KL -PEDH lsL " †$L -2$3, :O3 4$.)
 F0"#7p5 .3
TO3U T/! E B"ITL :T;<$8= /! -,," :3)P -$? ->$89/) :<$L -"./0, ->K$73 `?,$L
:T;<$8= -T>#E P, :/kL >$89/) K3IF [, KMN;) -,$L *[,$LGL *(1L:S3 Lc +)P :y "
1. Zivot and Andrews
2. Gregory and Hansen
119 ... '()*( +,"%-.( A75 )B '> )9CDE  F-<3 +"4,5>)& ?)%!
,$T0 B"n/T?, "IT) :3T)P -$T? gT8L", " KTH :T;<$8= -T> '(T) P, KT3IS3 tT .!$F B$OL
>(TGU$! 6TS Ž )E@N *>'() [, `?, $L .?, 1(STR) b_) 'f/3, :3I8?$F '() *?,K/!$F
gITW @T83 :),U KL (3,I:) >$/),& " g,$889 E B"IA3 K3/?U K;f3 'I~ ((1 g,$889 -,,"
[8T8A 3:TS3 mLT T 2t8/Tkd{ mLT qT?I ŒV/s) ->673 [8L g{f/3, >'() [, " ."$8F
."I1:)
KTL (2004) 4IT?,$ qT?I B(T1:T!$M) t8/Tkd{ 'Tf/3, mLT L ",(3/?, STR '() t
:?, $P gIW
yt % ( $ z t # !' $ z t " . G ! & , c, st " # ut
& 7
,
K
/
2,
5
G ! & , c, st " % --1 # exp 4) & 6 ! st ) ck " 1 **
0+
3 k %1
.
(1)
)1
,"$TTL ' E :T;< -T>$/),& ,"$TL ( *'(T) -,@TT3E$L -T>$89/) Z)T1 -,"$TL Z t *+U " KTH
BIT]3 B(TG>"+TD3 ?, t8/kd{ mL t KH G mL *[SY" .?, '() :;<$8= ->$/),&
c E 5:/<,ITGQ $/),T& & *'Tf/3, $T89/) $C3D3 s *mL [, " .?, $C" 673 KL :)73 P, 'f/3,
[8TL ,(T3,$H E K/T?I8& mL t G 'f/3, mL .?, 673 $889 XI0E Z])  K3/?U (~ B(G>"+D3
S 'Tf/3, $T89/) (2000) 6+,TQS> E tT" +E qT?I B(1€]L STR '() " .?, t E $nW
KQAT1) ANN *(bT_) 'Tf/3, -T>'(T)) STR *(-,K3/?U +I8?$F) TR '() Z)1 K3/?U $L ZS/D) ->'() :VH Iy KL .1
$TL ZS/TD) -T>'(T) $? P, , '() [, KH ?, :>:F^E -,," STR '() .(G/k> 4IH) Z(A '() E (:RIG.) :A.R
:(GH:) @S/) K3/?U
.?, TR '() STR '() P, :W< N~
-"T./0, $8Tkn (T0! KTQG, +U E T?, :T??, ZQTD) tT -,," ), *"," >B"," -E :LI< #P,$L ANN '() Kh$F,
8
8
T), .T?, BP,(T3, P, l8TL #P,$TL -,," '(T) *(T1L "P 8kL >B$F ",(M :/0E KH ?, Z8N" [, KL [, .(1L:) :G1E
."," , -"./0, $8kn 8VL0 STR '() " e,$Y
.?,@3E" b2 $889 [, STR '() " *"I1:) K/!$F $73 " ,@3E$L gIW KL 673 Z(A 4IH) Z(A '() 4_< $L
2. Logestic Function
3. Exponential Function
4. Terasvirta, (2004)
5. Smoothness Parameter
6. Van Dijk and et al, (2000)
.(8GH KMd,$) (2002) +,QS> E t"+E E (6E" (Vd) `(3, KL $/D8L KMN;) -,$L
8
44 45"67 1,23" /"0 '()*( +,"%-.( +" !"#$%& 120
",(TM K $/),T& .(T1L ,@T3E$L $T89/) "IT< T :3)P (3E *,@3E$L E ,@3E" $89/) ->Kn0E (3,I:)
.(>":) +D3 , 673 $89 gM!"
.(T>":) +D3 , 673 $m$? $889 & $/D8L $"f) E B"IL >673 [8L 'f/3, R$? B(G>" +D3 &
(T>,I< G % T?, st ; c KTH :3)P E B"IL G % 1 BC3U st 7 c E & : 9 KH :)CG>
KL 1 K;L, & : KH :)CG> ."I1:) Z(A 1(TR) -,K3/?U '() t KL 1 K;L, *[,$LGL *"IL
."I1:) Z(A :;< +I8?$F '() t
:?, $P e8$ KL :??, KV~$) K? -,," STR '() "EU$L
KT;f3 +,ITGR KTL KTH ?, AR :;< '() t b87G L KV~$) [, XE$1 :'() r8sD .1
KT;L, "ITdE +IT)PU Z)T1 6E" KTV~$) ."$T8F:T),$0 B"n/?, "I) Z8V] -,$L XE$1
.?, 673 $889 gM!" ",(M "I) " -$8Fb8S. E st zs/3, *>$89/) [8L :;<$8=
"EU$L E :;<$8= "EU$L -,$L K8NE, e?G) $"f) [/! Z)1 KV~$) [, :'() "EU$L .2
.?, :SG/?" $ƒH,(~ #E E 2+Ik!, -[I83 b/ICN, P, B"n/?, L '()
:TnV/s) ->+I)PU L B,$S> :Q8!,$F ->Z8V] Z)1 Ž{ISM) KV~$) [, :'() :LP, .3
KT;L, "ITA3 *ŒV/s) ->673 [8L >$/),& +"ILLc *:C/kAS>"I< ->;< "IA3 $873
B"," v8TYI KT),", " KW_< Iy KL KH ?OG, @d E >(3Sk& " B(3S80L :;<$8=
."I1:)
XIT3 P, :T;<$8= KT;L, "ITdE :T?$L -,$L +I)PU [, :>$89/) [8L :;<$8= K;L, "IdE +I)PU
$T89/) $TF, ."$T8F:T),$0 B"n/T?, "IT) -T>6T73 ",(TM [8T8M E 'Tf/3, $T89/) r8sD *LSTR
:"I1:) B"$L H KL $P :A$f +I8?$F *"I1 K/!$F $73 " z t P, -$.GR s t 'f/3,
3
yt % = $ z t # < = $j ~zt stj
j %1
( 2)
:1," b8>,I< *(1A3 z t P, :/Sk0 st $F, .?, zt % !1, ~z t "$ *+U " KH
3
yt % = $ z t # < = $j zt stj
j %1
1. Threshold Regression
2. Newton-Raphson
(3)
121 ... '()*( +,"%-.( A75 )B '> )9CDE  F-<3 +"4,5>)& ?)%!
 !" #$" %& '() H % =1 % = 2 % = 3 % gIW KL '() +"IL:;< $nW K8Y$!
.'() F !" #$" *+, %+-./ !" 0).1 #$23()
;, <+=>? 0).1 @A$1 B@C  $D.+E3 F+1 %61) 1567 %+-./ %8," !) 9: :  !""#$
:.+N O$P,) 2 58K& J@ 0L .1 .A! 0$D!" %GHG( 567.+I J@
H 4 : !3
H
3
H 2 : !1
: !2
!3
!2
!3
.1
.2
.3
$>, F2 L F3 L F4 $1 R+?.? %1 ) #@C$A .2S 0$D%+-./ %1 Q1. 0$D!" #$"
ESTR $A (O$V, .++E? $1 L $1 LSTR J@) LSTR2 J@ B H
3
%+-./  TS  .U+D5
L FA) !) 58A )?5 c1 c2 .2S %+-./ !" $1 %& C5 @+AW? (5A$K, O$V, J$X3,) J@)
$1 ZA $1 LSTR J@) LSTR1 J@ H 2 L H 4 0$D%+-./  TS  .K, Y$=3,) )
2
.C5 Y$=3,) (O$V, .++E?
$?().? [(? STR 0$DJ@  !" FA) .1$& :1%&'()*+,- ./0- ,) 123
!" FA) .'() 30./$N [(? #@C\]1 5K^ !" !) 5S$7 '_$` %& '() #@C \]1
T$X3> L d7 )%2cL 0$D#@,$K+c$1 0L u~t #@C L".1 0$D#@,$K+c$1 .&b.N a$C
%1 !" #$" Bb$() FA) .1 .'() J@ 0$D.3)$: %1 'eH, 5A$Kf3( .g&)@` h1$? 5i*j
:1 @D)7 .A! TS
FLM
) "SSR0 * SSR1 # &
%
(
q
$
'
) SSR1 &
%
(
' " T * n * q#$
(4)
T$k1. ;KP SSR L 5]+-? 0$D.+E3 )@k? q BJ@ 0$D.3)$: )@k? n B"  %&
.'() 58K& +(.N 0$D#@,$K+c$1 T$k1. ;KP SSR1 L J@ 0$D#@,$K+c$1
1. Test of No Error Autocorrelation
2. Terasvirta, (1998)
3. Godfrey, (1998)
44 DE/*F B+,C/7 /? 1>@A> .,/;'=> ./+4+567 8/9:;< 122
567.+I @A$1 STR J@ L".1 !) 9: :1/+/*(7 E, D/*"=/G %0-@"H 80G>E ,) 123
#$1L $D#@,$K+c$1 567.+I J@ ;, %& @f&5l./ !" .C5(.1 J@ 0$D#@,$K+c$1 1
:'() .A! TS %1 m_$= %+-./ .'() STR ;, !)
yt
0 , z t + / , z t G " - 1 , c1 , s1t # + . , zt H " - 2 , c2 , s2t # + ut
u t 2 iid
" ,1 #
(5)
2
J$X3,) h1$? L #e,5/$& 5A$of? %1 G !) #$23() 567.+I %61) a$& n+-? 0).1 @f&5 $+1 %&
a8C %1 J@ 567 RA.X? !) %+-./ FA) !" 0).1 .C )L J@  @A$1 *+, H ag 0.pA
:C5 #$23() .A!
yt
3
! , zt + / , z t G " - 1 , c1 , s1t # + 3 ! ,j ~zt s2jt + u t*
j 1
(6)
,
.g&)@` h1$? T$X3> L " ~zt, s2t , ~z ,t s22t , ~z t, s23t # 0L u~t .&b.N %G+(L %1 !" FA)
1567.+I e, .1 5fe .2S %+-./ ..+N5 O$P,) J@ 0$D.3)$: %1 'eH, 5A$Kf3(
:'() .A! TS %1 $D#@,$K+c$1
H : !1
!2
!3
.@C$1 s1t $KD $A L #1 z t  j 0$D.+E3 F+1 !) @,)?5 s2t Y$=3,)
.2S %+-./ !" a$C !" FA) :2MN:'O ./+K/L E, /+@'>E/7 1,G IG/J 123
.A! TS %1 FA*pA$j J@ 3.'($D.3)$: .++E? a1$X  mG3= 0$DO$V, F+1 '1$q 0$D.3)$:
:C5 %3C,
yt
0 " t #, z t + / " t #, z t G " - , c, s t # + u t
(7)
%&
1. Test of No Remaining Nonlinearity
2. Parameter Constancy Test
.'() 567.+I L 567 0$Dr=1  $D.3)$: 1 '1$q 0).1 5,!" B.pA $+1 %1 $A .3
123 ... 1>@A> .,/;'=> FE @G 13 @"JQ$ 5 %'R ./+D,E53@< P@;
"
0 " t # 0 + 40 H 0 - 0 , C 0 , t *
#
(8)
L
"
/ " t # / + 4/ H / - / , c/ , t *
u t ~ iid
#
(9)
" ,1 #
2
(10)
%&
t*
RA.X? !) Vf FA) 0).1 .'() - /
-0
t
T
(11)
.p,$+1 B$D.3)$:  .++E? O@^ .2S %+-./ L #1
:C5 #$23() .A! a8C %1 c L - 0$D.3)$: T$eq l./ $1 s$1 567.+I +(.N
yt
3
" #
" #
3
! , z t + 3 ! ,j z t t * j + 3 ! ,j + 3 z t t * j G " - , c , s t # + u t*
j 1
j 1
(12)
:) O$P,) .A! a8C %1 .pA J$X3,) h1$? %( 0).1 )?5 ) $& FA) %&
"
H - , c, t *
#
"
#
K
;
)
&8
9 1 + exp ( * - < t * * c k % 6
6
9
k 1
'
$7
:
. -/
*1
*
1
2
,
- 5
(13)
- 0 l./ $1 L k 1,2,3 0).1
0$D$67 0$D!" @ff&5 $+1 (2000) 1)$8KD L ZA L %& t $KD
0$D!" )f^ %1 $D@,$KH:  #@,$K+c$1 567.+I %61) B$D.3)$: 1 '1$q.+I B5p3HeKD7
L ARCH 0$D!" B$D!" FA) .1 #Lu^ .@,L5 $KC %1 STR J@ ZA 51$A!)  5GS)
).c #$23()  mG3= T$k_$6  STR J@ 51$A!) 0).1 *+, 2$D@,$KH: 1J$., !"
.@,)%3/.N
1. Van Dijk et al, (2000)
2. Jarque-Bera Test
44 DE/*F B+,C/7 /? 1>@A> .,/;'=> ./+4+567 8/9:;< 124
%G@S$ ./+8'</A .4
.E/3 ./+D,>, @G .E5@ .1-4
w.x %1 Q1. $" .UA)#.& #$23() 1386-1352 #L  %,s$( $" !) rDLv: FA) 
.@,)#@C z).=3() ).A) 5u() 0oKj 0*&. Z,$1 5,$! 0.( 0$D#) !) GDP L 0y.,)
0y.,) w.x @C {., @,L 2 )K, L 532, 0$D#L"./ 0y.,) w.x @,L 1 )K,
.@fD5 $>, ) 5(.1  0$DJ$(  0$x3c) @C L 532, 0$D#L"./
1386-1352 DE5, E, 25E E, 8TUG E>C+ V(W@G %'R ./+D,E53@< P@; 5E .1 E>,*
:C5 <=> .A! T$8, $D)K, FA) %1 %j? $1
 " @,L a&  5_L B#1 5_L*, 0y.,) w.x @,L $D J$( !) 5}k1  %~ .N)
.|
.'() 5>A)*/) 1386-1352 #L
%f) L #1 $A! 5(.1  #L  532, 0$D#L"./ w.x @C {., T$,$(, .Y
.'() #1 %V`u a1$c $! 5t  T$,$(), FA)
T$,$(, 0)) (1372 J$( !) aec €$eA.X?) %+_L) 0$D#L  0$x3c) @C %~ .N) .z
J$( !) $€ eA.X?) '() %3/$A rD$& $! Jt  T$,$(, FA) %f) 5_L B'() #1 @A@C
.'() l$KI) a1$c @k1 %1 1381 J$( !) T$,$(, FA) €$eA.X? L (@k1 %1 1372
L YuX,) #L  532, 0$D#L"./ 0y.,) w.x @C L 0$x3c) @C T$,$(, %f) .
T$eq .1 ‚fj L YuX,) ƒC 52f $q" #@fD$>, %& '() #1 $A! ‚fj
.'() 0$x3c) 0$D.+E3
125 ... 1>@A> .,/;'=> FE @G 13 @"JQ$ 5 %'R ./+D,E53@< P@;
€$eA.X? 0y.,) w.x @C L 0$x3c) @C $3/ 5(.1  #L 0$DJ$( .3>+1 
.#
.'() #1 %1$>
1386-1352 DE5, E, %'R ./+D,E53@< P@; FE 5 .,/;'=> FE 5E .2 E>,*
%S9?,/;'=> .&X> .2-4
.'() 0y.,) B@+_? h1$?  5GS) a)^ !) 58A B@C $+1 UD 0.V, 5,$e 'KHc  %& t$KD
.1 5f3e %& ) 0$x3c) @C .1 0y.,) '+G^ 5(.1 0).1 .A! .+E3 L J@ BrDLv: FA) 
:UA.+N5 .V,  B'() 0$x3c) @C 0$D%+-./
GDt
= + ! EOt + ut
w.x EO B1376 J$( '1$q 'K+c %1 5G7) <_$7$, @+_? @C {., GD B"  %&
w.x BFK-  .'() Ju7)„*j ut L !L  %8>1 )*D RH`.1 532, 0$D#L"./
L hA$ !$N B@+2( '2, B? FA*f1 B#& '2, B!$N '2, w$x hKj !) 532, 0$D#L"./
L5 $V3,) 0$x3c) @C 0$D%+-./ b$() .1 .'() #@" '( %1 532, 0$D#L"./ .A$(
0*&. Z,$1 5,$! 0.( T$^ut) Z,$1 !) ) $D.+E3 %1 Q1. T$^ut) L $" .@C$1 ! 5
.UA)#.& z).=3() ).A) 5u() 0oKj
44 DE/*F B+,C/7 /? 1>@A> .,/;'=> ./+4+567 8/9:;< 126
%S9?,/;'=> .&X> ,E53@G .3-4
FA) .'() J@  #$23()  0$D.+E3 0$D%2cL F++k? STR J@ ZA L".1  O$N F+3H=,
)@k? %1 %j? $1 ..+N5 O$P,) 3F+i& $f` B2*?)C B1Z+i$&" 0$D$+k !) #$23() $1 $&
FA) b$() .1 %& .UA)%3/.N .V,  %2cL F++k? 0).1 ƒu )f^ %1 ) *?)C $+k BT)@D$>
.C5 F++k? ZA BEO L GD .+E3 L .D 0).1 %f+o1 %2cL $+k
0$D!" !) #$23() $1 ) J$X3,) h1$? ;, L J$X3,) .+E3 @A$1 )@31) $D%2cL F++k? !) 9:
0).1 0$of>+: J@ @D5 $>, 2 JL@j %& t $KD .U+f& F++k? O( r=1  #@C 5/.k
.+E3 0).1 L LSTR2 J@ EO " t # J$X3,) .+E3 0).1 B567 J@ GD " t * 1# J$X3,) .+E3
F #$" p-values )@X FA.3K& %8fA) %1 %j? $1 .'() LSTR1 J@ *+, EO(t * 1) J$X3,)
5fkA LSTR2 J@ L J$X3,) .+E3 )f^ %1 EO " t # .+E3 B'() EO " t # J$X3,) .+E3 %1 Q1.
.C5 Y$=3,) %f+o1 J@ )f^ %1 0)%,$3(" %6X, L $1 Z+3Hjs J@
/Z'> @"[' 5   \/O'> .2 5Y
J$X3,) .+E3
GD " t * 1#
EO " t #
EO " t * 1#
*
p-values
0$of>+: J@
2/1275E- 1
Linear
8/3567E- 3
LSTR2
1/6703E- 2
LSTR1
FA) 567.+I '+D$ %1 %j? $1 .'() L".1 %G`. BSTR J@ ZA 0!$(J@  OL %G`.
!) #$23() $1 %& C5 ;L.C J@ L".1 0).1 %+_L) R($f .A$X F3/$A $1 %G`. FA) B$D J@
.@,C5 L".1 $D.3)$: ML h1$? 0!$(.g&)@` L 4FH/) -F?+, U3Ap_) B%+_L) .A$X FA)
BF+f…KD .@fD5 $>, ) t #$" *3,).: a7) )@^) %& '() .A! a8C %1 J@ 5A$o, L".1
.741/945 L 81/307 B3/015 $1 @,.1).1 R+?.? %1 C 2 , C1 , - !) 5A$o, L".1
1. Akaike Info Criterion
2. Schwarz Criterion
3. Hannan-Quinn Criterion
4. Newton-Rafson
127 ... %&'& ()#*+& ,- . % /012  3*45 ()6 "#$
GD t % [ . 22479 " . 6571
t " stat
" .
2 . 54
" 1 . 6 38 !
341 EO t "1 ] $ [ " . 15442 $ . 9939
" 2 . 5755
" .
!
GD t "1 $ .
!
276 EO t $ .
" 2 . 4271 !
( " 1 . 3 37 )
275 EO t
2 . 4329 !
GD t "1
2 . 1752 !
339 EO t "1 ] # [ G & , C , S t !]
2 . 565
!
:/01"2 34056 07" '% &8905 :; <6&6% #$ :/='6 3$% !" #$ %&'()* +, &-.
! 0B9 40CD &% GDt "1 >;)? @A*
.$P8C &6%PQ $R&% 95 %8J6 LB5 &% M$N%&'()* >;6)? O G % 1!
0B9)1E 40CD &% F$0G H6 I)0J )86&0K ' G %
3X;6)*0P* .456 G % 1 T'% T7" &% ' G % #'6 T7" &% 3=* &% M$N),U >VB +* +W-O *
:Z;&6% #'6 T7" <6)*
GDt % .22479 " .6571 GDt "1 $ .
275EOt " .
341EOt "1
:4N6% Z16-9 T'% T7" <6)* '
GDt % . 7 37 $ .3368 GDt "1 " .
1EOt " .
2EOt "1
+0, .456 -0/00003 * )*6)* T'% T7" &% ' -0/00066 * )*6)* #'6 T7" &% EO >;6)? [W
%-0W' 0_P +0B*6& T07" '% )0 &% 08_" <0M%&'()\ ])^ ' <%^8D6 $N& X1* $% !"
.456M%-* )8!1* #'6 T7" &% _P `GO&6 X;6 a$N ' +8N6%
<0#05 &% 3EO <6+"805( &6$0b +* +W-O * 6& T'% ' #'6 T7" +* `-*) < #5 33 &6%-"
T07" ' #'6 T07" e@0W 1362 0O 1353 <#5 &6%-" +* +W-O * .$P, cd! 1386 O 1353
.456 1386 O 1363 <#5 fN T'%
])0^ ' <%0^8D6 $0N& X10* 0_P +0B*6& :0; %-0W' )* PG M$(45%+* g;8" +* +W-O *
X10* 40Gh +0B*6& :0; %-W' )* P8G <%^8D6 $N& <+1?)\ 3T7" '% ) &% 8_" <M%&'()\
6-O _P `GO&6 X;6 %-W' f;=% H6 .%-N %& 6);6 %&- &% <i)"6 ])^ ' <%^8D6 $N&
:%), M&N6 );H f1V% '% +*
44 )A- ?6@5)9 =)> %&'& ()#*+& ()67689 :$);<#
128
% (&:5)*> &,I$  (EO) C  :DE. &@6 FGH. 3*45 ()6 "#$ ,5 .3 &BA5
(Threshold)
<i)0"6 ])0^ &% ;6&0," 0; 401\)k 4;%'$0l +0, ;0 jd* &% <i)"6 ])^ .1
&% 8_" <M%&'()\ ])^ ' <%^8D6 $N& X1* _P +B*6& :; +, M$NmJ* 3$"&6%
M&0N6 ( +0* @01" (2007)1V-n56 +, 456 o;=% H6 n; X;6 .$N* +8N6% %-W' 6);6
.456M%),
m0J* +, $N* 6);6 &% 8_" <M%&'()\ X1;K 41D $"6-O _P +B*6& 3)p;% f1V% .2
0* @01" X0;6 +0, M$0N$1V-O f06-J ); 05 <0W +0* M%&'()\ X;6 <6&," <H5X1!"W
.456+8\; j, q"( <&'M)q* 3M%&'()\ X;6 ])^ j;6@\6
0* +0, 4056 T'% T07" +0* 4G0C" #'6 T07" &% )O$;$0N _P +B*6& %-W' +* `-*) )p;% +8n"
4 Z0 ' rs0b"6 Z &-!, 3M&'% X;6 &% ' 456 1362-1353 M&'% fN T'% T7" +nP;6 +* +W-O
.$N*" Z &78"6 H6 &'% 6$Pu g;8" X;6 3X;6)*P* 3456M%), +*)AO 6& tPW #5
0* 6& 4CD X;6 .456 #$ *;H&6 +ov) 3#$ %&'()* H6 wK +ov) O&GJ +* ' T-5 +ov)
<00xy;' 0o, &-0. +* 3456$1K Z 4 &6%-" H6 +, &-.  .Z1P, HE( n1\6)x f1olO
G [*0O X;)08, :/01"2 34056 M$0N X10O lim G % 1 :/='6 .4056 M$0N X1zO LSTR2 #$ :;
n ('
' )_0R X10* LSTR2 [*0O X;)8, +nP;6 &78"6 ' 456 H'& &% +n!* &6@ 400 ]6).6 &% 6/ %'$v
LB05 &% #0b8"6 X10V'6 +, M%8\6 {_O6 &* '% T7" X1* #b8"6 :/hV2 3456 M$N M%&'()* 3$N* :;
.456 M%8\6 {_O6H'& &% +n!* &6@ 742 LB5 &% T'% #b8"6 ' +n!* &6@ 81
1. Squalli
129 ... %&'& ()#*+& ,- . % /012  3*45 ()6 "#$
@01" %&'()* +ov) &% V8v6 <B9 5&)* +* n1\6)x f1olO )* M'sJ 3*;H&6 +ov) &%
#08v6 |H&6 .4056 p80CG %-09 <0B9 %-0G" -H( 5&)* %&- -H( X1V'6 .Z;H6%)K
0/26 ' 0/11 30/81 30/59 30/57 30/38 30/23 30/08 >01O)O +0* +_D' 8 <6)* -H( X;6 F M&(
<0B9 %-0G" )0* 0PG -0H( X0;6 )_0R +10?)\ 0#8v6 |H&6 X;6 }56 )* .456 M$N %&'()*
.456 M$N $1;zO $R&% 95 %8J6 LB5 &% +_D' O <6)* p8CG%-9
J)K5 //L2 :. MB.$ N/*GOP Q.)2 &BA5 .4 &BA5
0* .4056 #$0 <$"CK &% B9)1E +B*6& $"" D* -H( 35&)* %&- -H( X1'%
\?6 B9)1E +B*6& %-G" )* PG )_R +1?)\ 3-H( X;6 (0/339) M$N%&'()* F &6$b +* +W-O
0)1~8 X10* 0B9)1E +B*6& +8C"6-O o, &-. +* #$ 6€V .%-N $1;zO $R&% 95 %8J6 LB5 &%
.$P, L;)^O 6&
|H&6 .4056 ‚0o8d <0T07" &% 0)86&K %-0*40*2 -0H( 3T-05 5&)* %&- -H(
)_0R +10?)\ ( }056 )0* +, M$N%&'()* 0/04 3 H 2 #b8"6 [*O <6)* -H( X;6 F M&( #8v6
$0R&% 95 #08v6 LB5 &% B9)1E ' B9 4CD &% >;6)? %-* Cn; )* PG -H( X;6
.%-N %&
-0H( ' ARCH-LM <0-0H( 6-0O0 STR #$0 &% o0R6 <-H( X;6 )* '@\6
%-0G"#0)" ' 0w"0;&6' "C" %-W' <B9 5&)* <6)* >1O)O +* @1" 6& Jarque-Bera
>01O)O +* ) 2 ' F <M&( #8v6 |H&6 3ARCH-LM -H( }56)* .%)* &, +* M$"1D*
-H( X;6 )_R +1?)\ M&( X;6 '% ) #8v6 |H&6 }56 )* .456 M$N %&'()* 0/59 ' 0/73
44 )A- ?6@5)9 =)> %&'& ()#*+& ()67689 :$);<#
130
$0R&% 95 %08J6 LB05 &% (ARCH) "-105)x&%-9 +* `')! w";&6' "C" %-G" )* PG
%-0*#0)" )0* 0PG )_0R +10?)\ Jarque-Bera M&0( }056)* 3X0? &% .%-0N0 +08\);€K
.%-N $1;zO $R&% 95 %8J6 LB5 &% $"CK
f0*D _1, )7" H6 M$N %&'()* B9)1E #$ 3#$ *;H&6 <-H( ƒ*B 3+Rs9 &-. +*
.%-N *;H&6 #-GD
)6)T;E/9 :U&&  (/S:R/*5 .5
<i)"6 ])^ )12zO 5&)* +* (STR) Z;s #b8"6 B9)1E -15)x& H6 M%_856 * j'yK X;6 &%
"0H <)05 <0M%6% H6 M%_8056 0* ' <%0^8D6 $0N& <0+10?)\ +0;K )* 6);6 <%^8D6 $N& )*
:$% !" +QVB X;6 g;8" .Z1896%)K 1386-1352
0B9)1E +0QVB %&-0 M&'% &% 6);6 &% <%^8D6 $N& ' 8_" <M%&'()\ ])^ X1* +B*6& .1
M&'% T'% T07" ' 1362 0O 1353 #05 f0N #'6 T07" .456 7" '% &895 :; <6&6% ' M%-*
.%-N fN 6& 1386-1363
.4056 +80N6% %-0W' 0_P +0B*6& T7" '% ) &% 8_" <M%&'()\ ])^ ' <%^8D6 $N& X1* .2
])0^ ' <%0^8D6 $0N& X10* 40Gh +B*6& :; %-W' )* P8G <%^8D6 $N& <+1?)\ 3X;6)*P*
.%-N %& 6);6 <6)* <i)"6
.456 )8x&@* T'% T7" +* 4GC" #'6 T7" &% _P +B*6& X;6 a$N .3
:%-N +1R-O 8_" <M%&'()\ ])^ ' <%^8D6 $N& X1* _P +B*6& %-W' +* +W-O *
4C1" >5P 6);6 <%^8D6 $N& :;)lO <6)* 8_" < M%&'()\ ])^ j;6@\6 <4515 .1
+0, ;0j0d* &% 08_" <0M%&'()\ ])^ &% j, 3X;6)*P* .($N& <+1?)\ %& f1V% +*)
<0j0d* &% ])0^ <6)0* <i)"6 [*P <H5%6H( * $"6-O 3$"&6% <i)"6 ])^ &% ;6&,"
.%-N <%^8D6 $N& ' $1V-O j;6@\6 mJ* a6&%R 8v ; ' $;$W
40qW &% ' M$0( f0J +0* <)1x-0oW 6&0," <0jd* &% <i)"6 [GP X;6 +;'&* ])^ H6 .2
+0, %-0N 0 )0O+80CW)* "0H )06 X0;6 .$0;( f0J +0* L1l0R <@0;&+0")* ( H6 +0P1q* M%_856
…0lV 0<)01xZ10^O &% @01" 6& 40C;H „10l )0* 8_" <M%&'()\ ])^ _P <&6€x)12zO
.Z1;"
131 ... %&'& ()#*+& ,- . % /012  3*45 ()6 "#$
Q.);$
3>) -VW&
' <i)0"6 ])0^ X1* <)A")x 41oJ +B*6& 5&)*» 3(1384) ‡&6H ˆ6†'& ' @;@J$15 3X&(
36)0;6 <%0^8D6 <q!'yK +"f^\ 3«1381-1346 <#5 . 6);6 &% <%^8D6 $N&
.142-115 .cR 324 M&N
$0N& ' <i)"6 ])^ +B*6& 5&)*» 3(1388) )\5GJ 3M)H ' ?D 3‰O) 3$1v 3M%(
.38-1 .cR 386 M&N 3«6);6 %^8D6 ‚o8d <jd* &% #~8N6 ' <%^8D6
])00^ ' <%00^8D6 $00N& X100* +00B*6& 005&)*» 3(1380) ;_B00^ &U( ' $001v 300!;)*6
.45-11 .cR 314 M&N 3+Q5-O ' j"6% +oA 3«6);6 &% 8_" M$J <M%&'()\
<$0q +0W)O 3«<%)*&0, %)0n;'& 0* "0H <q;)05 AP5%^8D6» 3(1386) )8V6' 3}&$"6
.6)qO 3(‡) {%R T6 Mp!"6% a6&!8"6 3&-K#6-N $1Q5 ' D%R
])^ 3<&895 4CnN» 3(1388) 11P;'@D 3XCv$l ' &-K )~R6 3X1Cv 3%'6% <%-Gq*
3Z0q" #05 3<%0^8D6 <q0!'yK +"f^\ 3«(1346-1386) 6);6 <%^8D6 $N& ' <i)"6
. 84-53 .cR 3T-5 M&N
<0?bO +0B*6& 05&)*» 3(1386) &-0K f01o9 3X1!\6 ' %6H( )n_8 3oJ$l 3%'6% 3<%-Gq*
T-0oJ +P0!'yK 3«1346-83 M&'% . 6);6 &% <%^8D6 $N& * <i)"6 <6+B56' ' ;q"
.34-13 .cR 322 M&N 3Z!N #5 36&$"H Mp!"6% 3J8W6 ' "C"6
3«6)0;6 &% <%0^8D6 $0N& ' <i)0"6 ])0^ X1* 41oJ +B*6& 5&)*» 3(1376) X;)C" 3<%GD
.6);6 <i)"6 o j;
$0N& ' <i)0"6 <0f0v ])0^ X1* +B*6&» 3(1383) XCl }GJ 3Z7J6 ' ?& 3M%6H&A"
.80-61 .cR 32 M&N 3<i)"6 %^8D6 aQVB +"f^\ 3«6);6 &% <%^8D6 <jd*
3G/<Y5& -X
Adnan Hye, Q. M. and S. Riaz (2008), “Causality between Energy
Consumption and Economic Growth: The Case of Pakistan”, The
Lahore Journal of Economics, vol. 13 (2 ), pp. 45-58.
Apergis, N. and J.E. Payne (2009), “Energy Consumption and Economic
Growth: Evidence from the Commonwealth of Independent States”,
Energy Economics, vol. 31, pp. 211–216.
44 )A- ?6@5)9 =)> %&'& ()#*+& ()67689 :$);<#
132
Belke, A., C. Dreger and F.D. Haan (2010), “Energy Consumption and
Economic Growth –New Insights into the Cointegration
Relationship”, Ruhr Economic Papers, pp. 1-22.
Cheng, S.B. and T.W. Lai (1997), “An Investigation of Cointegration and
Causality between Energy Consumption and Economic Activity in
Taiwan Province of China”, Energy Economics, vol. 19, pp. 435– 444.
Chontanawat, J., L.C. Hunt and R. Pierse ( 2008), “Does Energy
Consumption Cause Economic Growth? Evidence from a Systematic
Study of over 100 Countries”, Journal of Policy Modeling, vol. 30, pp.
209–220.
Chontanawat, J., L.C. Hunt and R. Pierse (2006), “Causality between
Energy Consumption and GDP: Evidence from 30 OECD and 78
Non-OECD Countries”, Surrey Energya Economics Discussion Paper
Series 113.
Erbaykal, E. (2008), “Disaggregate Energy Consumption and Economic
Growth: Evidence From Turkey”, International Research Journal of
Finance and Economics, vol. 20, pp. 173-180.
Gelo, T. (2009), “Causality between Economic Growth and Energy
Consumption in Croatia”, Original Scientific Paper, vol. 27 (2), pp.
327-348.
Glasure, Y.U. (2002), “Energy and National Income in Korea: further
Evidence on the Role of Omitted Variables”, Energy Economics, vol.
24, pp. 355–365.
Hwang, D.B.K. and B. Gum (1992), “The Causal Relationship between
Energy and GNP: the Case of Taiwan”, Journal of Energy and
Development, vol. 16, pp. 219–226.
Kraft, A. and J. Kraft (1978), “On the Relationship between Energy and
GNP”, Journal of Energy Development, vol. 3, pp. 401–403.
Lise, W. and K.V. Montfort (2007), “Energy Consumption and GDP in
Turkey: Is there Aco-Integration Relationship?”, Energy Economics,
vol. 29 , pp. 1166–1178.
Nachane, D.M. , R.M. Nadkarni and A.V. Karnik (1988), “Cointegration
and Causality Testing of the Energy–GDP Relationship: a CrossCountry Study”, Applied Economics, vol. 20, pp. 1511–1531.
Nondo, C.,
M.S. Kahsai and P.V. Schaeffer (2010), “Energy
Consumption and Economic Growth: Evidence from COMESA
Countries”, RESEARCH PAPER, pp. 1-20.
Oh, W. and K. Lee (2004), “Causal Relationship between Energy
Consumption and GDP: the Case of Korea 1970–1999”, Energy
Economics, vol. 26 (1), pp. 51–59.
Rufael, Y.W. (2006), “Electricity Consumption and Economic Growth: A
Time Series Experience for 17 African Countries”, Energy Policy, vol.
133 ... %&'& ()#*+& ,- . % /012  3*45 ()6 "#$
34, pp.1106–1114.
Squalli, J. (2007), “Electricity Consumption and Economic Growth:
Bounds and Causality Analyses of OPEC Countries”, Energy
Economics, vol. 29, pp. 1192–1205.
Stern, D.I. (2000), “A Multivariate Cointegration Analysis of the Role of
Energy in the US Macroeconomy”, Energy Economics, vol. 22, pp.
267–283.
Ter¨asvirta, T. (2004), “Smooth Transition Regression Modelling, in H.
L¨utkepohl and M. Kratzig (eds); Applied Time Series Econometrics”,
Cambridge University Press, Cambridge, 17.
Tsani, Stela Z. (2009), “Energy Consumption and Economic Growth: A
Causality Analysis for Greece”, Energy Economics, pp. 1-9.
Van Dijk, D., T. Trasvirta and P.H. Franses (2000), “Smooth Transition
Autoregressive Models-a Survey of Recent Developments”,
Econometric Reviews, vol. 21, pp. 1-47.
Yang, H.Y. ( 2000), “A note on the Causal Relationship between Energy
and GDP in Taiwan”, Energy Economics, vol. 22, pp. 309–317.
Zou, G. and K.W. Chau (2005), “Short and Long Run Effects Between
Oil Consumption and Economic Growth in China”, Energy Policy,
Article in Press.