'()*( +,"%-.( +" !"#$%& 111- 133 :";<= 81389 29*" 844 45"67 81,23" /"0 @'()*( +,"%-.( A75 )B '> )9CDE F-<3 +"4,5>)& ?)%! FGH)9I ,)J*5 K* &'($)*+ ,!-#./ 01 !" !#$% 89/9/16 :#$%& 89/3/29 :!" +5"9NOB '()PNQ R0SE +,"%-.( A75 +L)3( ?)%! M9B GB(5 J#*( 1I5 B "NB U(AV ) -7(A3 F3"OJ* W*"-3 :"XY"G! M*( "!( @Z0(-&)T 5(). F05)B ,5S! "N[#*( 2N\ NXY"G! ,5S! +"5SQV 8/A! +")9]-! 8XY"G! F3"!^ 45, B \SE :"9NN_)& 8ANN75 :"9NN_)& FNN#X* 8NN#9!^ MNN*(5, ,SNN\S! 9NN_)& 5"NN[` ^( FNNJ* MN*( 5, .AN3(4,)V A9*DE (5 +,5SH^"B :"9_)& "* F*"a#H :"9_)& 8F*S\&)= M*( b"0( )B .19*"63 'S!^> (5 '()*( 5SQV 5, A75 :"9_)& 19(SHF! 8 "NB 5Sd#! M*AB .,S7F! +,"%-.( A75 c\S! +L)3( ?)%! 5, *(2&( :"9_)& +,"N%-.( AN75 NGB(5 (STR) 1*e! /"f-3( FGH)9I 'S90)T5 /A! ^( 4,"<-0( 5()N. FN05)B ,5S! (5 1386- 1352 45, 5, '()*( 5, F-<3 +"4,5>)& ?)%! +"N4,5>)N& ?)N%! +,"%-.( A75 GB(5 V A,F! '"Q3 "-&"* .19,F! +,"%-.( A75 GB(5 U"d3 , ) 5, 4,SB F!"d3 , 5"-H"0 +(5(, '()*( 5, F-<3 5, F<#! g"hE5( M*( :A7 8M6_ 5, .Z0(4,SB F<#! F-<3 +"4,5>)& ?)%! MN*( ',SNBFN<#! .Z0( )-T52B ,S7F! i!"7 (5 1362- 1353 45, V /( U"d3 )N9hXE +L)N3( ^( 4,"<-0( 5, F*(5"V"3 ,S\ )B +A"7 '(S#j B '(SE F! (5 GB(5 NGB(5 KN* ,S\ )B F#h! A75 :"9_)& W*"-3 M*( b"0( )B 8M*( )B '2&( .,S63 .,S7F63 A9*DE '()*( 5SQV 5, +L)3( ?)%! +,"%-.( A75 M9B Zha! .673 $889 *:;<$8= ->'() *+,$, *-"./0, (1 *-2$3, 4$.) :+A9$V +"4L( .Q43 *O13 *C22 :JEL +A#Bfhm [email protected] [email protected] .@$A BCD3," "./0, BE$F "/?, .@$A BCD3," -@K)3$L E -"./0, KM?I (1,:?G1H -IJD3," 44 45"67 1,23" /"0 '()*( +,"%-.( +" !"#$%& 112 !Af! .1 ST1 KTL (T8NI (TGU$! " :VTW, -T>B"O3 P, :Q +,IGR KL -2$3, -"./0, -> 8NM! $/D8L " -2$3, 4$.) [8L \A, BI]3 +,$CD>E^& K0_R "I) -> XIYI) P, :Q Z8N" [8S> KL ."E:) *B(1a$;) KH :>K$73 E B(16J3, 83" " +IGH KH :MN;) `?, $L .?, -"./0, (1 E @T83 +,$, " ."," :M;0 $73 b> -E $L >$89/) [, -,%F$c, BI]3 E 8VR Od BL" +,I:S3 6TJ3, -"T./0, (T1 E -2$T3, 4$T.) [8TL KT;L, [88M -,$L *:;< ->(GU$! K& $L :MN;) BIT]3 E :3T)P (T3E P, :LI< e$f gMN;) [, Kh $F, ?, +U KdI ZL0 K/Q3 ), i?, B(1 -,%TF$8cj KTH T8M0,E [T, [/!$F B("3 ), *(3"EU ?"KL b> -E >$89/) [, -,%F$8cj h" , -"./0, +,$8Fb8S. ?, [QS) *(1L +kQ (3,I:S3 B,IS> b> -E $L >$89/) [, .(GH BA/1, E -"T./0, (T1 [8TL KT;L, (STR) 1bT_) 'f/3, :;<$8= +I8?$F '() L l>E^& [, " ,$T0 :T?$L "IT) , (T1 g8TY$! `T?, $TL -2$T3, mTAG) +,ITGR KL :/n3 -> B"EU$! 4$.) K/<T? @TS/) $TC" -T>l>E^T& P, , l>E^& [, Z8N" (Gh KL STR #E P, B"n/?, .b,B"," :?, Z(TM KN"M) E "," b/k8? 8MYE KL :C/kL -"./0, (1 E -2$3, 4$.) [8L K;L, .1 " "T./0, KTH (T1LK/T1," :/8MYE E 673 KL :C/kL E B"IA3 Lc (3,I:) O3U [8L I& '() KH "$8F ,$0 $73 () KG8)P [, " gMN;) " (L K/Q3 [, *[,$LGL ."," ,$0 +U ."," , $), [, +"IS3 p]N 8VL0 STR '(T) qT?I ,@T3E" gITW KL -/<? ->kQ1 >673 " $889 STR '() " .2 KT3F,(d :T?$L T E :)IT>I) $T89/) +"$TH",E KTL -PT83 *[,$LGL ."I1:) rsD) .k83 -/<? kQ1 , 6T73 $T889 +T)P E gTM!" ",(TM +"$THrsTD) 8VL0 KQG, $L BE_R STR '() .3 .(>" +D3 @83 , $C" 673 KL 673 t P, 'f/3, R$? *"," lsL *l>E^& g8L", 'E, lsL " K)(f) +8L P, u& :?,B(1 b87G lsL 4 " KMN;) [, E -$T8FKTJ8/3 :3& lsL " O3 " E :L$J ->K/! 6I? lsL *l>E^& :?G1#E 6E" .b,B"$H a$;) , >"OGD8& 1. Smooth Transition Regression 113 ... '()*( +,"%-.( A75 )B '> )9CDE F-<3 +"4,5>)& ?)%! :"9B,( .2 +)d3 F3"h! .1-2 l,@T!, " -2$T3, KTQG, KTL KTdI TL ."," >IDH -"./0, KM?I E (1 " :SO) lf3 -2$3, +3,""./0, *(GH:) -PL , :??, :Df3 ",$!, :F(3P ->,(3/?, E (8NI Z),IR -EB$OL v;? `T?, $TL 1.(T3,B"$TH (T8Hj -"./0, KM?I E (1 E -2$3, 4$.) [8L wGCG K;L, "IdE $L E (T8NI mLT xT$y P, -"./0, (1 E -2$3, 4$.) [8L K;L, [, Z8V] *-"./0, +_H g8L", bO) B"O3 t +,IGR KL -2$3, KH e8$ [(L .?, $k8) "./0, ZH -Yf E KY$R ->:G]G) 'Tf/3, TL ."I1:) $JG) (8NI mL -{L S? KL 'f/3, KL +U l,@!, E B(1 zIk]) (8NI mL " +"ITA3 -"ITSR |$T! TL E B(T1ZTf/G) T?, S? KL (AS) "./0, ZH KY$R :G]G) (8NI mL 2 .(L:) l,@!, :N"M ()U" E (8NI *(AD) ZH -Yf :G]G) ->K$73 " -"./0, (1 $L -2$3, 4$.) ,%F$8cj lf3 1970 '? :/n3 +,$]L P, l8& *TH -E$T83 P, :MLT -"T./0, (T1 T>t8?_HI}3 (8NI mL xL;) .(1 K/!$F B("3 -"./0, (T8NI " -E$TY B"TO3 tT +,ITGR KL -2$3, lf3 KL +U " KH ?, -2INIGQ v;? E K)$? (T1 " -2ITNIGQ lTf3 +","+TD3 -,$TL ZH -EB$OL Z)R P, mL [, " .?,B(D3 -,B1, -T>$89/) qT?I KTH T?, -"./0, (1 P, :DsL ZH -EB$OL Z)R) "I1:) B"n/?, -"./0, -,$TL B"," tT +,ITGR KTL -2$3, *BPE$), '~ [, L .(?,B(D3 B"," v8YI K)$? E H -E$83 +3,""T./0, T (T1TRL 1970 'T? :T/n3 +,$T]L ."I1:) zIk]) gE$Y t (8NI ,$S/?, " .(TGGH a$T;) K)$T? E TH -E$T83 -T>B"O3 GH " bO) (8NI Z)R t +,IGR KL , -2$3, -$TbO) lf3 -2$3, 2000-1981 BE" -,$L KH "," +D3 (1 6J3, 3IEA q?I KH KMN;) t 4 .?, B"$H -PL KM?I '~ " ->IDH -"./0, (1 " $C" ->$89/) KL Ak3 , -2$T3, ,%TF$8cj lf3 $L +3,""./0, $? P, l8L (1 :Q@8!I8L -ICN, ,(!$y +3,""./0, g(T1 KTL -"T./0, (T1 *(T1 :Q@8!IT8L -ICN, " .(3,B"$H (8Hj >IDH -"./0, (1 " 4$T.) KTL "T./0, :C/kL,E +,@8) KL :C/kL $8cj [, g(1 +,@8) KH "," ,$0 -2$3, $8cj ] ZT),IR K)$T? E TH -E$T83 KTH T?, [T, +3,""./0, P, BE$F [, '{(/?, `?, ."," -2$3, 1. Adnan Hye and Riaz, (2008), p. 45 3. International Energy Agency 4. Erbaykal, (2008), p. 172 56 . *(1388 )*+,QS> E -"IAOL .2 44 45"67 1,23" /"0 '()*( +,"%-.( +" !"#$%& 114 (T1 ZT)R [$bO) -2$3, *[,$LGL .(3," P83 -2$3, 4$.) KL B"n/?, -,$L KH (G/k> -, K;?,E 1 .?, -"./0, -"TT./0, (T1 E -2$T3, 4$T.) [8TL KT;L, :T?$L KTL KTH , :T>K8TY$! *:TVH ITy KTL -T>K8TY$! *2(T1 -T>K8TY$! :P, (TGAR KTH "$TH b8Tkf K/T?" TOh KTL +,I :) *(3,K/<,"$& -"T./0, (T1 -T>K8TY$! xLT;) 5.:TG< -T>K8TY$! E 4-"I<PL ->K8Y$! *3:IdK!$W $TL b8f/k)$8= E b8f/k) gIW KL -"./0, (1 " B(GGH[88M KnN) t +,IGR KL -2$3, 4$.) KTH :>?8? *>K8Y$! [, `?, $L .",%F:) $c, K)$? -"IdI) E H -E$83 (8NI Z),IR `T?, $TL .(T3," -"T./0, (T1 $TL :LIV;)T3 $Tc, (3I1:) s, -2$3, 4$.) l>H 4(> L (G3,I:) *(3I1:) :~,$y -2$3, 4$.) l>H 4(> L KH :>?8? :IdK!$W ->K8Y$! K;L, t "IdE $L >K8Y$! [, KH ?, Z8N" [, KL [, .(1L K/1,(3 -"./0, (1 $L :nG) $8cj KTL -"I<PL ->K8Y$! *ZLf) " .(3," (8Hj -2$3, 4$.) KL -"./0, (1 P, K!$yt :VR KTH (TGGH:T) +8L E K/1," (8Hj -2$3, 4$.) E -"./0, (1 [8L K!$yE" :VR K;L, t "IdE xLT;) *TO3 " .(T3,%F:T) $8cjT bT> -E $TL +)Pb> Iy KL -"./0, (1 E -2$3, 4$.) +,,(T!$y E [T, P, ."," -"./0, (1 $L :H(3, $nW $8cj -2$3, 4$.) *:G< ->K8Y$! :TnG) $8cj -2$3, :IdK!$W ->?8? KH (3,B(8fR [, $L :/8A ->K8Y$! (G3) >K8Y$! [, (T1 E -2$T3, 4$T.) [8TL :VR K;L, "IA3 $L :G< ->K8Y$! *m0,E " .",(3 -"./0, (1 $L KTH :>ITDH " $/TD8L -"T./0, (T1 -T>K8TY$! KTH T?, :TG/nF 6.(T3," (T8Hj -"./0, 4(T> TL KTH :T>T?8? Ts, *[,$LTGL .(T1L:T) "TW *?, $/D8L -2$3, KL O3U :C/kL,E *[STY " .(GH:) t$] , >IDH [, -"./0, (1 "I1:) s, -2$3, 4$.) " l,@!, $T/SH -2$T3, KTL TO3U :C/kL,E +,@8) KH ?, "W :>IDH " $/D8L :IdK!$W ->K8Y$! 7 1. Tsani, (2009), p. 2 2. Growth Hypothesis 3. Conservation Hypothesis 4. Feedback Hypothesis 5. Neutrality Hypothesis 6. Belke et al, (2010), p. 4 7. Nondo et al, (2010), p. 5 .?, 115 ... '()*( +,"%-.( A75 )B '> )9CDE F-<3 +"4,5>)& ?)%! FB)nE :"XY"G! #9Q9 .2-2 -8TTkL +,$CTD>E^& KTTdI "IT) PTTL$" P, -"T./0, (T1 E -2$TT3, 4$T.) [8TTL KT;L, KTMN;) ."$THB1, (1978) 1!,$H E !,$H KMN;) KL +,I:) gMN;) [, [$:S(0 P, KH K/!$F,$0 " TQ$)U " -"T./0, (T1 E GDP [8TL :VR K;L, :?$L KL "I< KMN;) " !,$H E !,$H GDP P, KT!$yt :VR K;L, t KH "," +D3 O3U ->K/! .(G/<,"$& 1874-1947 :3)P BE" KT;L, :T?$L KTL ITDH < " -"P gMN;) >(ML ."," "IdE Q$)U " -2$3, 4$.) KL *KTMN;) "IT) :3T)P BE" KTL KTdI TL gTMN;) [T, P, 6 ,(TH $T> KH (G/<,"$& $89/) E" [, [8L :TGM *KTG8)P [," "IdI) K8Y$! Oh P, :Q OG, @d E KMN;) "I) ->IDH *'() ->$89/) " gMN;) [, P, -",(M .(3,B"$H (8j , -"I<PL E :G< *:IdK!$W *(1 ->K8Y$! "IT) tT8GQ E #E *KTMN;) "IT) ->ITDH T ITDH *:3T)P BE" KL KdI L IDH < 1 'E(Td eN0 " , +U /3 KH *(3,K/!$F ,$0 Z8V] E K@J "I) B(1#,@F /3 E B"n/?, .b,B"$H K,, E KT/<,"$& -"T./0, (T1 E -2$T3, 4$T.) [8L K;L, :?$L KL :MN;) @83 IDH Z<," " :T?$L KTL (1376) -"TA0 .(T3,B"$TH #,@TF , :En/) /3 :?$L "I) BE" E #E KL K/kL E KT/<,"$& $J3$F 8VR t8GQ P, B"n/?, L -"./0, (1 E -2$3, 4$.) [8L g()BIH K;L, bT> $TL 'kQ P, $/SH :3)P KVW! " K!$y E" 8VR K;L, t ()U" E -2$3, KH (>":) +D3 E B"$TH (T8j , $89/) E" [8L g()(GVL K;L, t "IdE :C/1A3,b> K;L, :?$L L -"A0 .(3," 6,(TH $> -,$L g()(GVL '"M -I? KL H$~ E Z(M R$? ;< v8]. '() P, -$8FB$OL L T;< v8]T. -ITCN, P, B"n/?, L (1380) :n;.) E :SD$L, .?, B"$H KA?]) , >$89/) P, -1338 BE" " +,$T, " :T/n3 B(TSR -T>B"EU$T! 4$.) E -"./0, (1 [8L K;L, :?$L KL rNT<3 (T8NI KTL :T/n3 B(TSR -T>B"EU$T! 4$.) P, :VR K;L, (3,B"," +D3 E K/<,"$& 1378 .",(3 "IdE g()BIH " :V<," 1. Kraft and Kraft 44 45"67 1,23" /"0 '()*( +,"%-.( +" !"#$%& 116 5SQV o5"H iH(, 5, -&)T:5S= FB)nE :"XY"G! =eH .1 /A\ /3 4$.) E -"./0, (1 [8L K!$y E" :VR K;L, t -2$3, "IdE -2$3, 4$.) S? KL (8NI P, :VR K;L, .k83 (8NI :VR K;L, -2$3, 4$.) :NE K/1," t8GQ E #E KMN;) "I) ->IDH E BE" +,$CD>E^& $J3$F 8VR (1993- 1955) +,I Hwang and Gum (1992) Ik8> 8VR (1955- 1993) +,I Cheng and Lai (1997) ECM E $J3$F - ZC3, (1985- 1950) {S,IF Nachan et al (1998) $J3$F 8VR (1948- 1994) Q$)U Stern (2000) $J3$F 8VR (1997- 1954) +,I Yang (2000) $J3$F 8VR (1961- 2000 ) B$H Glasure (2002) (1970- 1999 ) B$H Oh and Lee (2004) (1953- 2002) [8h Zou and Chau (2005) "IdE E K3,$? :M0,E GDP $L -2$3, 4$.) A) $c, KL K3,$? -2$3, 4$.) P, K!$y t 8VR K;L, t K3,$? :M0,E GDP (1 KL -2$3, 4$.) P, K!$y t :VR K;L, -"./0, 4$.) E -"./0, (1 [8L K!$y E" :VR K;L, t -2$3, GDP E -2$3, 4$.) [8L K!$y E" :VR K;L, t lf3 n3 S80 KH :N~ " *"," "IdE .(GH:) -PL , -,B(GGH[88M (1 KL -2$3, 4$.) P, K!$y t :VR K;L, -"./0, $J3$F 8VR *GDP E n3 4$.) [8L :C/1A3,b> K;L, "IdE ->BE" -,$L g()(GVL " K!$yE" :VR K;L, "IdE :VR K;L, "IA3 *2002- 1985 E 1984- 1953 :3)P E :C/1A3,b> t8GQ K;L, "IdE E 1984- 1953 BE" " g()BIH " $J3$F 8VR -,$L g()BIH " GDP KL n3 4$.) P, :VR 2002- 1985 BE" K;L, "IdE *IDH 9 " :C/1A3,b> K;L, "IdE *IDH 6 " :Q$/QN, -2$3, 4$.) KL GDP P, :VR E :C/1A3,b> t8GQ :f$!U IDH 17 GDP KL :Q$/QN, -2$3, 4$.) P, :VR K;L, "IdE $J3$F 8VR (1971- 2001) Rufael (2006) IDH 3 " K!$yE" :VR K;L, "IdE E IDH 3 " E GDP E -2$3, 4$.) [8L :C/1A3,b> K;L, "IdE E :C/1A3,b> t8GQ -2$3, 4$.) KL GDP P, K!$y t :VR K;L, t $J3$F 8VR (1970- 2003) K8H$ Lise and Motfort (2006) " -2$3, P, $/D8L B"n/?, Z8N" -"./0, (1 " *(1L:) 3)& E ",INkN, *Q/?H ->IDH *KIF,Q83 *`,E(G> ->IDH " KH :N~ :M0,E GDP $L :H(3, $nW $8cj -2$3, 4$.) .?, K/1," (ML K]nW " K),", t8)G" Z3& *3)& E ",INkN, *Q/?H KIF,Q83 *`,E(G> Chontanawat et al (2006, 2008) 117 ... '()*( +,"%-.( A75 )B '> )9CDE F-<3 +"4,5>)& ?)%! 5SQV o5"H iH(, 5, -&)T :5S= FB)nE :"XY"G! =eH .1 /A\ !(,( /3 t8GQ E #E KMN;) "I) ->IDH E BE" +,$CD>E^& :C/1A3,b> t8GQ (1970- 2003) K8H$ Erbaykal (2008) (1971- 2007) +/kH& Adnan Hye and Riaz (2008) " n3 E :Q$/QN, -2$3, E" 4$.) A) $c, -2$3, 4$.) A) $c, E -"./0, (1 $L g()BIH -2$3, 4$.) :nG) $c, E -"./0, (1 $L n3 .g()(GVL " -"./0, (1 $L :Q$/QN, E" [8L g()BIH " K!$yE" :VR K;L, t "IdE KL -2$3, 4$.) P, K!$yt :VR K;L, t E $89/) E :C/1A3,b> t8GQ 4$.) :nG) -,%F$c, *g()(GVL " -"./0, (1 $J3$F 8VR .g()(GVL " -"./0, (1 $L -2$3, 4$.) KL GDP P, K!$yt :VR K;L, t "IdE 4$.) " -(W" 0/509 l,@!, E ZH -2$3, 8VR E VAR '() " -(W" t l,@!, $c, " 6, t BE" ZH -2$3, $J3$F (1953- 2005) :?,E$H Gelo (2009) (2006- 1960) +3I Tsani (2009) .6, t-1 BE" GDP ZH -2$3, 4$.) P, K!$y t :VR K;L, t "IdE 4$.) P, K!$y t :VR K;L, t *:M0,E GDP KL K;L, "IdE 6(R E GDP KL :/MGW E :C3< -2$3, II)) E ,"I ZS~ lsL " :M0,E GDP E -2$3, 4$.) [8L :VR .Zf3 E *:M0,E GDP [8L :C/1A3,b> K;L, t "IdE -E$83 E rN<3 Lc K)$? Z8QD *-2$3, 4$.) 4$.) P, K!$yt :VR K;L, t "IdE *H K;L, t E g()BIH " -"./0, (1 KL -2$3, " -"./0, (1 E -2$3, 4$.) [8L K!$y E" :VR .g()(GVL *`E_L *+JL U *+/kG), :C/1A3,b> + I)PU *+/?@80$0 *+/k0,@0 *+3I v8]. '() E :3E(& *+/kQ8d *K8?E *-E,(NI) (ECM) ;< +/kQLP, E [,$H, Apergis and Payne (2009) (1991- 2005) " rN<3 (8NI E :/n3 ->B"EU$! 4$.) [8L K!$y E" :VR K;L, t (G>":) +D3 *[8GS> TT8VR KTT;L, :TT?$L KTTL -,KTMN;) " (1383) [TTk]) `TTAR E B",PTTJ3 ."," "ITTdE g(T)(GVL #E P, B"n/T?, TL 1381-1350 BE" " +,$T, " -"T./0, -T>lsL (1 E -2$3, ->Z)~ -T>ZT)~ 4$T.) [8TL KT!$y E" :VR K;L, t (>":) +D3 O3U /3 .(G/<,"$& I8D> 8VR T8VR KT;L, :T?$L KTL (1384) X,P E [T)U ."," "ITdE -"T./0, -T>lTsL (T1 E -2$3, E" P, B"n/T?, TL 1381 -1346 -T>'? " +,$, " -"./0, (1 E -2$3, 4$.) [8L -$J3$F T8VR KT;L, tT "ITdE #E E" $T> T/3 .(T3,KT/<,"$& T;< v8]. E 1II)) E ,"I #E B"n/T?, TL *[SY " .(GGH:) (8j , :M8Ay PF 4$.) KL -"./0, (1 P, K!$y t -$J3$F 1. Toda and Yamamoto 44 45"67 1,23" /"0 '()*( +,"%-.( +" !"#$%& 118 [8TL (g(T)(GVL E g()BIH ")K!$y E" -$J3$F 8VR K;L, t "IdE ;< v8]. #E P, II)T) E ,"IT #E /3 `?, $L KH :N~ " .(3$8F:) KJ8/3 , -"./0, (1 E $L 4$.) E -"ITAOL ."," "ITdE -"T./0, (1 KL $L 4$.) P, K!$y t -$J3$F 8VR K;L, t OG -TYf K;L, :?$L KL ;< v8]. -ICN, E $J3$F 8VR #E P, B"n/?, L (1385) +,QS> (3$8F:) KJ8/3 E K/<,"$& 1383-1346 BE" " +,$, " -"./0, (1 L -2$3, -,K;?,E E :O3 KTH :NT~ " i"," "ITdE -"./0, (1 KL -2$3, :O3 -Yf P, K!$y t :VR K;L, t KH E -"ITAOL .T?, K!$y E" :VR K;L, t -"./0, (1 E -2$3, -,K;?,E -Yf [8L :VR K;L, TL , 1384-1346 BE" " +,$T, " -"T./0, (T1 E -2$3, 4$.) [8L K;L, (1388) +,QS> KTD -T>+IT)PU P, B"n/T?, TL /?, [, " .(3"," ,$0 :?$L "I) -/<? kQ1 $L (8Hj :TMSdbT> +IT)PU [8GS> E ,@3E" ZQ1 KL -/<? g,$889 [88M -,$L 1PE(3, -gIP (~,E KH (G>":)+D3 -/<? kQ1 $L (8Hj L g()(GVL K;L, :?$L I7G) KL 2[kG> --IC$F +,TQS> E B")U ."," "IdE +,$, -"./0, (1 E -2$3, 4$.) [8L A) g()(GVL K;L, t -ITTCN, [8TTGS> E (ARDL):MPITT -TT> KTTn0E TTL :/TTDFPL"I< -ITTCN, P, B"n/TT?, TTL (1388) 4$T.) E -2$T3, :TO3 4$T.) [8TL g()BIH E g()(GVL K;L, "IdE *(ECM) ;< v8]. -T>'T? " +,$T, "T./0, TV/s) -T>lTsL '9/1, E -"./0, (1 E -2$3, ->Z)~ :O3 E g(T)BTIH T8VR KT;L, tT "," +TD3 TO3U T/3 .(T3"," ,$T0 :?$L "I) , 1382-1350 "ITdE -"T./0, (T1 KTL $TL -2$3, :O3 4$.) E -2$3, :O3 4$.) P, K!$y t g()(GVL :TM8Ay PTF :TO3 4$T.) KTL -"T./0, (1 P, @83 K!$y t g() BIH 8VR K;L, t ."," KTL MGTW lsL " -2$3, :O3 4$.) P, K!$y t 8VR K;L, t *[, $L +E@!, ."," "IdE P, g(T)(GVL E g()BIH 8VR K;L, t *[8GS> ."," "IdE lsL [, " B"E@!, #P, (1 ."," "IdE lsL [, " B"E@!, #P, (1 KL -PEDH lsL " $L -2$3, :O3 4$.) F0"#7p5 .3 TO3U T/! E B"ITL :T;<$8= /! -,," :3)P -$? ->$89/) :<$L -"./0, ->K$73 `?,$L :T;<$8= -T>#E P, :/kL >$89/) K3IF [, KMN;) -,$L *[,$LGL *(1L:S3 Lc +)P :y " 1. Zivot and Andrews 2. Gregory and Hansen 119 ... '()*( +,"%-.( A75 )B '> )9CDE F-<3 +"4,5>)& ?)%! ,$T0 B"n/T?, "IT) :3T)P -$T? gT8L", " KTH :T;<$8= -T> '(T) P, KT3IS3 tT .!$F B$OL >(TGU$! 6TS )E@N *>'() [, `?, $L .?, 1(STR) b_) 'f/3, :3I8?$F '() *?,K/!$F gITW @T83 :),U KL (3,I:) >$/),& " g,$889 E B"IA3 K3/?U K;f3 'I~ ((1 g,$889 -,," [8T8A 3:TS3 mLT T 2t8/Tkd{ mLT qT?I V/s) ->673 [8L g{f/3, >'() [, " ."$8F ."I1:) KTL (2004) 4IT?,$ qT?I B(T1:T!$M) t8/Tkd{ 'Tf/3, mLT L ",(3/?, STR '() t :?, $P gIW yt % ( $ z t # !' $ z t " . G ! & , c, st " # ut & 7 , K / 2, 5 G ! & , c, st " % --1 # exp 4) & 6 ! st ) ck " 1 ** 0+ 3 k %1 . (1) )1 ,"$TTL ' E :T;< -T>$/),& ,"$TL ( *'(T) -,@TT3E$L -T>$89/) Z)T1 -,"$TL Z t *+U " KTH BIT]3 B(TG>"+TD3 ?, t8/kd{ mL t KH G mL *[SY" .?, '() :;<$8= ->$/),& c E 5:/<,ITGQ $/),T& & *'Tf/3, $T89/) $C3D3 s *mL [, " .?, $C" 673 KL :)73 P, 'f/3, [8TL ,(T3,$H E K/T?I8& mL t G 'f/3, mL .?, 673 $889 XI0E Z]) K3/?U (~ B(G>"+D3 S 'Tf/3, $T89/) (2000) 6+,TQS> E tT" +E qT?I B(1]L STR '() " .?, t E $nW KQAT1) ANN *(bT_) 'Tf/3, -T>'(T)) STR *(-,K3/?U +I8?$F) TR '() Z)1 K3/?U $L ZS/D) ->'() :VH Iy KL .1 $TL ZS/TD) -T>'(T) $? P, , '() [, KH ?, :>:F^E -,," STR '() .(G/k> 4IH) Z(A '() E (:RIG.) :A.R :(GH:) @S/) K3/?U .?, TR '() STR '() P, :W< N~ -"T./0, $8Tkn (T0! KTQG, +U E T?, :T??, ZQTD) tT -,," ), *"," >B"," -E :LI< #P,$L ANN '() Kh$F, 8 8 T), .T?, BP,(T3, P, l8TL #P,$TL -,," '(T) *(T1L "P 8kL >B$F ",(M :/0E KH ?, Z8N" [, KL [, .(1L:) :G1E ."," , -"./0, $8kn 8VL0 STR '() " e,$Y .?,@3E" b2 $889 [, STR '() " *"I1:) K/!$F $73 " ,@3E$L gIW KL 673 Z(A 4IH) Z(A '() 4_< $L 2. Logestic Function 3. Exponential Function 4. Terasvirta, (2004) 5. Smoothness Parameter 6. Van Dijk and et al, (2000) .(8GH KMd,$) (2002) +,QS> E t"+E E (6E" (Vd) `(3, KL $/D8L KMN;) -,$L 8 44 45"67 1,23" /"0 '()*( +,"%-.( +" !"#$%& 120 ",(TM K $/),T& .(T1L ,@T3E$L $T89/) "IT< T :3)P (3E *,@3E$L E ,@3E" $89/) ->Kn0E (3,I:) .(>":) +D3 , 673 $89 gM!" .(T>":) +D3 , 673 $m$? $889 & $/D8L $"f) E B"IL >673 [8L 'f/3, R$? B(G>" +D3 & (T>,I< G % T?, st ; c KTH :3)P E B"IL G % 1 BC3U st 7 c E & : 9 KH :)CG> KL 1 K;L, & : KH :)CG> ."I1:) Z(A 1(TR) -,K3/?U '() t KL 1 K;L, *[,$LGL *"IL ."I1:) Z(A :;< +I8?$F '() t :?, $P e8$ KL :??, KV~$) K? -,," STR '() "EU$L KT;f3 +,ITGR KTL KTH ?, AR :;< '() t b87G L KV~$) [, XE$1 :'() r8sD .1 KT;L, "ITdE +IT)PU Z)T1 6E" KTV~$) ."$T8F:T),$0 B"n/?, "I) Z8V] -,$L XE$1 .?, 673 $889 gM!" ",(M "I) " -$8Fb8S. E st zs/3, *>$89/) [8L :;<$8= "EU$L E :;<$8= "EU$L -,$L K8NE, e?G) $"f) [/! Z)1 KV~$) [, :'() "EU$L .2 .?, :SG/?" $H,(~ #E E 2+Ik!, -[I83 b/ICN, P, B"n/?, L '() :TnV/s) ->+I)PU L B,$S> :Q8!,$F ->Z8V] Z)1 {ISM) KV~$) [, :'() :LP, .3 KT;L, "ITA3 *V/s) ->673 [8L >$/),& +"ILLc *:C/kAS>"I< ->;< "IA3 $873 B"," v8TYI KT),", " KW_< Iy KL KH ?OG, @d E >(3Sk& " B(3S80L :;<$8= ."I1:) XIT3 P, :T;<$8= KT;L, "ITdE :T?$L -,$L +I)PU [, :>$89/) [8L :;<$8= K;L, "IdE +I)PU $T89/) $TF, ."$T8F:T),$0 B"n/T?, "IT) -T>6T73 ",(TM [8T8M E 'Tf/3, $T89/) r8sD *LSTR :"I1:) B"$L H KL $P :A$f +I8?$F *"I1 K/!$F $73 " z t P, -$.GR s t 'f/3, 3 yt % = $ z t # < = $j ~zt stj j %1 ( 2) :1," b8>,I< *(1A3 z t P, :/Sk0 st $F, .?, zt % !1, ~z t "$ *+U " KH 3 yt % = $ z t # < = $j zt stj j %1 1. Threshold Regression 2. Newton-Raphson (3) 121 ... '()*( +,"%-.( A75 )B '> )9CDE F-<3 +"4,5>)& ?)%! !" #$" %& '() H % =1 % = 2 % = 3 % gIW KL '() +"IL:;< $nW K8Y$! .'() F !" #$" *+, %+-./ !" 0).1 #$23() ;, <+=>? 0).1 @A$1 B@C $D.+E3 F+1 %61) 1567 %+-./ %8," !) 9: : !""#$ :.+N O$P,) 2 58K& J@ 0L .1 .A! 0$D!" %GHG( 567.+I J@ H 4 : !3 H 3 H 2 : !1 : !2 !3 !2 !3 .1 .2 .3 $>, F2 L F3 L F4 $1 R+?.? %1 ) #@C$A .2S 0$D%+-./ %1 Q1. 0$D!" #$" ESTR $A (O$V, .++E? $1 L $1 LSTR J@) LSTR2 J@ B H 3 %+-./ TS .U+D5 L FA) !) 58A )?5 c1 c2 .2S %+-./ !" $1 %& C5 @+AW? (5A$K, O$V, J$X3,) J@) $1 ZA $1 LSTR J@) LSTR1 J@ H 2 L H 4 0$D%+-./ TS .K, Y$=3,) ) 2 .C5 Y$=3,) (O$V, .++E? $?().? [(? STR 0$DJ@ !" FA) .1$& :1%&'()*+,- ./0- ,) 123 !" FA) .'() 30./$N [(? #@C\]1 5K^ !" !) 5S$7 '_$` %& '() #@C \]1 T$X3> L d7 )%2cL 0$D#@,$K+c$1 0L u~t #@C L".1 0$D#@,$K+c$1 .&b.N a$C %1 !" #$" Bb$() FA) .1 .'() J@ 0$D.3)$: %1 'eH, 5A$Kf3( .g&)@` h1$? 5i*j :1 @D)7 .A! TS FLM ) "SSR0 * SSR1 # & % ( q $ ' ) SSR1 & % ( ' " T * n * q#$ (4) T$k1. ;KP SSR L 5]+-? 0$D.+E3 )@k? q BJ@ 0$D.3)$: )@k? n B" %& .'() 58K& +(.N 0$D#@,$K+c$1 T$k1. ;KP SSR1 L J@ 0$D#@,$K+c$1 1. Test of No Error Autocorrelation 2. Terasvirta, (1998) 3. Godfrey, (1998) 44 DE/*F B+,C/7 /? 1>@A> .,/;'=> ./+4+567 8/9:;< 122 567.+I @A$1 STR J@ L".1 !) 9: :1/+/*(7 E, D/*"=/G %0-@"H 80G>E ,) 123 #$1L $D#@,$K+c$1 567.+I J@ ;, %& @f&5l./ !" .C5(.1 J@ 0$D#@,$K+c$1 1 :'() .A! TS %1 m_$= %+-./ .'() STR ;, !) yt 0 , z t + / , z t G " - 1 , c1 , s1t # + . , zt H " - 2 , c2 , s2t # + ut u t 2 iid " ,1 # (5) 2 J$X3,) h1$? L #e,5/$& 5A$of? %1 G !) #$23() 567.+I %61) a$& n+-? 0).1 @f&5 $+1 %& a8C %1 J@ 567 RA.X? !) %+-./ FA) !" 0).1 .C )L J@ @A$1 *+, H ag 0.pA :C5 #$23() .A! yt 3 ! , zt + / , z t G " - 1 , c1 , s1t # + 3 ! ,j ~zt s2jt + u t* j 1 (6) , .g&)@` h1$? T$X3> L " ~zt, s2t , ~z ,t s22t , ~z t, s23t # 0L u~t .&b.N %G+(L %1 !" FA) 1567.+I e, .1 5fe .2S %+-./ ..+N5 O$P,) J@ 0$D.3)$: %1 'eH, 5A$Kf3( :'() .A! TS %1 $D#@,$K+c$1 H : !1 !2 !3 .@C$1 s1t $KD $A L #1 z t j 0$D.+E3 F+1 !) @,)?5 s2t Y$=3,) .2S %+-./ !" a$C !" FA) :2MN:'O ./+K/L E, /+@'>E/7 1,G IG/J 123 .A! TS %1 FA*pA$j J@ 3.'($D.3)$: .++E? a1$X mG3= 0$DO$V, F+1 '1$q 0$D.3)$: :C5 %3C, yt 0 " t #, z t + / " t #, z t G " - , c, s t # + u t (7) %& 1. Test of No Remaining Nonlinearity 2. Parameter Constancy Test .'() 567.+I L 567 0$Dr=1 $D.3)$: 1 '1$q 0).1 5,!" B.pA $+1 %1 $A .3 123 ... 1>@A> .,/;'=> FE @G 13 @"JQ$ 5 %'R ./+D,E53@< P@; " 0 " t # 0 + 40 H 0 - 0 , C 0 , t * # (8) L " / " t # / + 4/ H / - / , c/ , t * u t ~ iid # (9) " ,1 # 2 (10) %& t* RA.X? !) Vf FA) 0).1 .'() - / -0 t T (11) .p,$+1 B$D.3)$: .++E? O@^ .2S %+-./ L #1 :C5 #$23() .A! a8C %1 c L - 0$D.3)$: T$eq l./ $1 s$1 567.+I +(.N yt 3 " # " # 3 ! , z t + 3 ! ,j z t t * j + 3 ! ,j + 3 z t t * j G " - , c , s t # + u t* j 1 j 1 (12) :) O$P,) .A! a8C %1 .pA J$X3,) h1$? %( 0).1 )?5 ) $& FA) %& " H - , c, t * # " # K ; ) &8 9 1 + exp ( * - < t * * c k % 6 6 9 k 1 ' $7 : . -/ *1 * 1 2 , - 5 (13) - 0 l./ $1 L k 1,2,3 0).1 0$D$67 0$D!" @ff&5 $+1 (2000) 1)$8KD L ZA L %& t $KD 0$D!" )f^ %1 $D@,$KH: #@,$K+c$1 567.+I %61) B$D.3)$: 1 '1$q.+I B5p3HeKD7 L ARCH 0$D!" B$D!" FA) .1 #Lu^ .@,L5 $KC %1 STR J@ ZA 51$A!) 5GS) ).c #$23() mG3= T$k_$6 STR J@ 51$A!) 0).1 *+, 2$D@,$KH: 1J$., !" .@,)%3/.N 1. Van Dijk et al, (2000) 2. Jarque-Bera Test 44 DE/*F B+,C/7 /? 1>@A> .,/;'=> ./+4+567 8/9:;< 124 %G@S$ ./+8'</A .4 .E/3 ./+D,>, @G .E5@ .1-4 w.x %1 Q1. $" .UA)#.& #$23() 1386-1352 #L %,s$( $" !) rDLv: FA) .@,)#@C z).=3() ).A) 5u() 0oKj 0*&. Z,$1 5,$! 0.( 0$D#) !) GDP L 0y.,) 0y.,) w.x @C {., @,L 2 )K, L 532, 0$D#L"./ 0y.,) w.x @,L 1 )K, .@fD5 $>, ) 5(.1 0$DJ$( 0$x3c) @C L 532, 0$D#L"./ 1386-1352 DE5, E, 25E E, 8TUG E>C+ V(W@G %'R ./+D,E53@< P@; 5E .1 E>,* :C5 <=> .A! T$8, $D)K, FA) %1 %j? $1 " @,L a& 5_L B#1 5_L*, 0y.,) w.x @,L $D J$( !) 5}k1 %~ .N) .| .'() 5>A)*/) 1386-1352 #L %f) L #1 $A! 5(.1 #L 532, 0$D#L"./ w.x @C {., T$,$(, .Y .'() #1 %V`u a1$c $! 5t T$,$(), FA) T$,$(, 0)) (1372 J$( !) aec $eA.X?) %+_L) 0$D#L 0$x3c) @C %~ .N) .z J$( !) $ eA.X?) '() %3/$A rD$& $! Jt T$,$(, FA) %f) 5_L B'() #1 @A@C .'() l$KI) a1$c @k1 %1 1381 J$( !) T$,$(, FA) $eA.X? L (@k1 %1 1372 L YuX,) #L 532, 0$D#L"./ 0y.,) w.x @C L 0$x3c) @C T$,$(, %f) . T$eq .1 fj L YuX,) C 52f $q" #@fD$>, %& '() #1 $A! fj .'() 0$x3c) 0$D.+E3 125 ... 1>@A> .,/;'=> FE @G 13 @"JQ$ 5 %'R ./+D,E53@< P@; $eA.X? 0y.,) w.x @C L 0$x3c) @C $3/ 5(.1 #L 0$DJ$( .3>+1 .# .'() #1 %1$> 1386-1352 DE5, E, %'R ./+D,E53@< P@; FE 5 .,/;'=> FE 5E .2 E>,* %S9?,/;'=> .&X> .2-4 .'() 0y.,) B@+_? h1$? 5GS) a)^ !) 58A B@C $+1 UD 0.V, 5,$e 'KHc %& t$KD .1 5f3e %& ) 0$x3c) @C .1 0y.,) '+G^ 5(.1 0).1 .A! .+E3 L J@ BrDLv: FA) :UA.+N5 .V, B'() 0$x3c) @C 0$D%+-./ GDt = + ! EOt + ut w.x EO B1376 J$( '1$q 'K+c %1 5G7) <_$7$, @+_? @C {., GD B" %& w.x BFK- .'() Ju7)*j ut L !L %8>1 )*D RH`.1 532, 0$D#L"./ L hA$ !$N B@+2( '2, B? FA*f1 B#& '2, B!$N '2, w$x hKj !) 532, 0$D#L"./ L5 $V3,) 0$x3c) @C 0$D%+-./ b$() .1 .'() #@" '( %1 532, 0$D#L"./ .A$( 0*&. Z,$1 5,$! 0.( T$^ut) Z,$1 !) ) $D.+E3 %1 Q1. T$^ut) L $" .@C$1 ! 5 .UA)#.& z).=3() ).A) 5u() 0oKj 44 DE/*F B+,C/7 /? 1>@A> .,/;'=> ./+4+567 8/9:;< 126 %S9?,/;'=> .&X> ,E53@G .3-4 FA) .'() J@ #$23() 0$D.+E3 0$D%2cL F++k? STR J@ ZA L".1 O$N F+3H=, )@k? %1 %j? $1 ..+N5 O$P,) 3F+i& $f` B2*?)C B1Z+i$&" 0$D$+k !) #$23() $1 $& FA) b$() .1 %& .UA)%3/.N .V, %2cL F++k? 0).1 u )f^ %1 ) *?)C $+k BT)@D$> .C5 F++k? ZA BEO L GD .+E3 L .D 0).1 %f+o1 %2cL $+k 0$D!" !) #$23() $1 ) J$X3,) h1$? ;, L J$X3,) .+E3 @A$1 )@31) $D%2cL F++k? !) 9: 0).1 0$of>+: J@ @D5 $>, 2 JL@j %& t $KD .U+f& F++k? O( r=1 #@C 5/.k .+E3 0).1 L LSTR2 J@ EO " t # J$X3,) .+E3 0).1 B567 J@ GD " t * 1# J$X3,) .+E3 F #$" p-values )@X FA.3K& %8fA) %1 %j? $1 .'() LSTR1 J@ *+, EO(t * 1) J$X3,) 5fkA LSTR2 J@ L J$X3,) .+E3 )f^ %1 EO " t # .+E3 B'() EO " t # J$X3,) .+E3 %1 Q1. .C5 Y$=3,) %f+o1 J@ )f^ %1 0)%,$3(" %6X, L $1 Z+3Hjs J@ /Z'> @"[' 5 \/O'> .2 5Y J$X3,) .+E3 GD " t * 1# EO " t # EO " t * 1# * p-values 0$of>+: J@ 2/1275E- 1 Linear 8/3567E- 3 LSTR2 1/6703E- 2 LSTR1 FA) 567.+I '+D$ %1 %j? $1 .'() L".1 %G`. BSTR J@ ZA 0!$(J@ OL %G`. !) #$23() $1 %& C5 ;L.C J@ L".1 0).1 %+_L) R($f .A$X F3/$A $1 %G`. FA) B$D J@ .@,C5 L".1 $D.3)$: ML h1$? 0!$(.g&)@` L 4FH/) -F?+, U3Ap_) B%+_L) .A$X FA) BF+f KD .@fD5 $>, ) t #$" *3,).: a7) )@^) %& '() .A! a8C %1 J@ 5A$o, L".1 .741/945 L 81/307 B3/015 $1 @,.1).1 R+?.? %1 C 2 , C1 , - !) 5A$o, L".1 1. Akaike Info Criterion 2. Schwarz Criterion 3. Hannan-Quinn Criterion 4. Newton-Rafson 127 ... %&'& ()#*+& ,- . % /012 3*45 ()6 "#$ GD t % [ . 22479 " . 6571 t " stat " . 2 . 54 " 1 . 6 38 ! 341 EO t "1 ] $ [ " . 15442 $ . 9939 " 2 . 5755 " . ! GD t "1 $ . ! 276 EO t $ . " 2 . 4271 ! ( " 1 . 3 37 ) 275 EO t 2 . 4329 ! GD t "1 2 . 1752 ! 339 EO t "1 ] # [ G & , C , S t !] 2 . 565 ! :/01"2 34056 07" '% &8905 :; <6&6% #$ :/='6 3$% !" #$ %&'()* +, &-. ! 0B9 40CD &% GDt "1 >;)? @A* .$P8C &6%PQ $R&% 95 %8J6 LB5 &% M$N%&'()* >;6)? O G % 1! 0B9)1E 40CD &% F$0G H6 I)0J )86&0K ' G % 3X;6)*0P* .456 G % 1 T'% T7" &% ' G % #'6 T7" &% 3=* &% M$N),U >VB +* +W-O * :Z;&6% #'6 T7" <6)* GDt % .22479 " .6571 GDt "1 $ . 275EOt " . 341EOt "1 :4N6% Z16-9 T'% T7" <6)* ' GDt % . 7 37 $ .3368 GDt "1 " . 1EOt " . 2EOt "1 +0, .456 -0/00003 * )*6)* T'% T7" &% ' -0/00066 * )*6)* #'6 T7" &% EO >;6)? [W %-0W' 0_P +0B*6& T07" '% )0 &% 08_" <0M%&'()\ ])^ ' <%^8D6 $N& X1* $% !" .456M%-* )8!1* #'6 T7" &% _P `GO&6 X;6 a$N ' +8N6% <0#05 &% 3EO <6+"805( &6$0b +* +W-O * 6& T'% ' #'6 T7" +* `-*) < #5 33 &6%-" T07" ' #'6 T07" e@0W 1362 0O 1353 <#5 &6%-" +* +W-O * .$P, cd! 1386 O 1353 .456 1386 O 1363 <#5 fN T'% ])0^ ' <%0^8D6 $0N& X10* 0_P +0B*6& :0; %-0W' )* PG M$(45%+* g;8" +* +W-O * X10* 40Gh +0B*6& :0; %-W' )* P8G <%^8D6 $N& <+1?)\ 3T7" '% ) &% 8_" <M%&'()\ 6-O _P `GO&6 X;6 %-W' f;=% H6 .%-N %& 6);6 %&- &% <i)"6 ])^ ' <%^8D6 $N& :%), M&N6 );H f1V% '% +* 44 )A- ?6@5)9 =)> %&'& ()#*+& ()67689 :$);<# 128 % (&:5)*> &,I$ (EO) C :DE. &@6 FGH. 3*45 ()6 "#$ ,5 .3 &BA5 (Threshold) <i)0"6 ])0^ &% ;6&0," 0; 401\)k 4;%'$0l +0, ;0 jd* &% <i)"6 ])^ .1 &% 8_" <M%&'()\ ])^ ' <%^8D6 $N& X1* _P +B*6& :; +, M$NmJ* 3$"&6% M&0N6 ( +0* @01" (2007)1V-n56 +, 456 o;=% H6 n; X;6 .$N* +8N6% %-W' 6);6 .456M%), m0J* +, $N* 6);6 &% 8_" <M%&'()\ X1;K 41D $"6-O _P +B*6& 3)p;% f1V% .2 0* @01" X0;6 +0, M$0N$1V-O f06-J ); 05 <0W +0* M%&'()\ X;6 <6&," <H5X1!"W .456+8\; j, q"( <&'M)q* 3M%&'()\ X;6 ])^ j;6@\6 0* +0, 4056 T'% T07" +0* 4G0C" #'6 T07" &% )O$;$0N _P +B*6& %-W' +* `-*) )p;% +8n" 4 Z0 ' rs0b"6 Z &-!, 3M&'% X;6 &% ' 456 1362-1353 M&'% fN T'% T7" +nP;6 +* +W-O .$N*" Z &78"6 H6 &'% 6$Pu g;8" X;6 3X;6)*P* 3456M%), +*)AO 6& tPW #5 0* 6& 4CD X;6 .456 #$ *;H&6 +ov) 3#$ %&'()* H6 wK +ov) O&GJ +* ' T-5 +ov) <00xy;' 0o, &-0. +* 3456$1K Z 4 &6%-" H6 +, &-. .Z1P, HE( n1\6)x f1olO G [*0O X;)08, :/01"2 34056 M$0N X10O lim G % 1 :/='6 .4056 M$0N X1zO LSTR2 #$ :; n (' ' )_0R X10* LSTR2 [*0O X;)8, +nP;6 &78"6 ' 456 H'& &% +n!* &6@ 400 ]6).6 &% 6/ %'$v LB05 &% #0b8"6 X10V'6 +, M%8\6 {_O6 &* '% T7" X1* #b8"6 :/hV2 3456 M$N M%&'()* 3$N* :; .456 M%8\6 {_O6H'& &% +n!* &6@ 742 LB5 &% T'% #b8"6 ' +n!* &6@ 81 1. Squalli 129 ... %&'& ()#*+& ,- . % /012 3*45 ()6 "#$ @01" %&'()* +ov) &% V8v6 <B9 5&)* +* n1\6)x f1olO )* M'sJ 3*;H&6 +ov) &% #08v6 |H&6 .4056 p80CG %-09 <0B9 %-0G" -H( 5&)* %&- -H( X1V'6 .Z;H6%)K 0/26 ' 0/11 30/81 30/59 30/57 30/38 30/23 30/08 >01O)O +0* +_D' 8 <6)* -H( X;6 F M&( <0B9 %-0G" )0* 0PG -0H( X0;6 )_0R +10?)\ 0#8v6 |H&6 X;6 }56 )* .456 M$N %&'()* .456 M$N $1;zO $R&% 95 %8J6 LB5 &% +_D' O <6)* p8CG%-9 J)K5 //L2 :. MB.$ N/*GOP Q.)2 &BA5 .4 &BA5 0* .4056 #$0 <$"CK &% B9)1E +B*6& $"" D* -H( 35&)* %&- -H( X1'% \?6 B9)1E +B*6& %-G" )* PG )_R +1?)\ 3-H( X;6 (0/339) M$N%&'()* F &6$b +* +W-O 0)1~8 X10* 0B9)1E +B*6& +8C"6-O o, &-. +* #$ 6V .%-N $1;zO $R&% 95 %8J6 LB5 &% .$P, L;)^O 6& |H&6 .4056 0o8d <0T07" &% 0)86&K %-0*40*2 -0H( 3T-05 5&)* %&- -H( )_0R +10?)\ ( }056 )0* +, M$N%&'()* 0/04 3 H 2 #b8"6 [*O <6)* -H( X;6 F M&( #8v6 $0R&% 95 #08v6 LB5 &% B9)1E ' B9 4CD &% >;6)? %-* Cn; )* PG -H( X;6 .%-N %& -0H( ' ARCH-LM <0-0H( 6-0O0 STR #$0 &% o0R6 <-H( X;6 )* '@\6 %-0G"#0)" ' 0w"0;&6' "C" %-W' <B9 5&)* <6)* >1O)O +* @1" 6& Jarque-Bera >01O)O +* ) 2 ' F <M&( #8v6 |H&6 3ARCH-LM -H( }56)* .%)* &, +* M$"1D* -H( X;6 )_R +1?)\ M&( X;6 '% ) #8v6 |H&6 }56 )* .456 M$N %&'()* 0/59 ' 0/73 44 )A- ?6@5)9 =)> %&'& ()#*+& ()67689 :$);<# 130 $0R&% 95 %08J6 LB05 &% (ARCH) "-105)x&%-9 +* `')! w";&6' "C" %-G" )* PG %-0*#0)" )0* 0PG )_0R +10?)\ Jarque-Bera M&0( }056)* 3X0? &% .%-0N0 +08\);K .%-N $1;zO $R&% 95 %8J6 LB5 &% $"CK f0*D _1, )7" H6 M$N %&'()* B9)1E #$ 3#$ *;H&6 <-H( *B 3+Rs9 &-. +* .%-N *;H&6 #-GD )6)T;E/9 :U&& (/S:R/*5 .5 <i)"6 ])^ )12zO 5&)* +* (STR) Z;s #b8"6 B9)1E -15)x& H6 M%_856 * j'yK X;6 &% "0H <)05 <0M%6% H6 M%_8056 0* ' <%0^8D6 $0N& <0+10?)\ +0;K )* 6);6 <%^8D6 $N& )* :$% !" +QVB X;6 g;8" .Z1896%)K 1386-1352 0B9)1E +0QVB %&-0 M&'% &% 6);6 &% <%^8D6 $N& ' 8_" <M%&'()\ ])^ X1* +B*6& .1 M&'% T'% T07" ' 1362 0O 1353 #05 f0N #'6 T07" .456 7" '% &895 :; <6&6% ' M%-* .%-N fN 6& 1386-1363 .4056 +80N6% %-0W' 0_P +0B*6& T7" '% ) &% 8_" <M%&'()\ ])^ ' <%^8D6 $N& X1* .2 ])0^ ' <%0^8D6 $0N& X10* 40Gh +B*6& :; %-W' )* P8G <%^8D6 $N& <+1?)\ 3X;6)*P* .%-N %& 6);6 <6)* <i)"6 .456 )8x&@* T'% T7" +* 4GC" #'6 T7" &% _P +B*6& X;6 a$N .3 :%-N +1R-O 8_" <M%&'()\ ])^ ' <%^8D6 $N& X1* _P +B*6& %-W' +* +W-O * 4C1" >5P 6);6 <%^8D6 $N& :;)lO <6)* 8_" < M%&'()\ ])^ j;6@\6 <4515 .1 +0, ;0j0d* &% 08_" <0M%&'()\ ])^ &% j, 3X;6)*P* .($N& <+1?)\ %& f1V% +*) <0j0d* &% ])0^ <6)0* <i)"6 [*P <H5%6H( * $"6-O 3$"&6% <i)"6 ])^ &% ;6&," .%-N <%^8D6 $N& ' $1V-O j;6@\6 mJ* a6&%R 8v ; ' $;$W 40qW &% ' M$0( f0J +0* <)1x-0oW 6&0," <0jd* &% <i)"6 [GP X;6 +;'&* ])^ H6 .2 +0, %-0N 0 )0O+80CW)* "0H )06 X0;6 .$0;( f0J +0* L1l0R <@0;&+0")* ( H6 +0P1q* M%_856 0lV 0<)01xZ10^O &% @01" 6& 40C;H 10l )0* 8_" <M%&'()\ ])^ _P <&6x)12zO .Z1;" 131 ... %&'& ()#*+& ,- . % /012 3*45 ()6 "#$ Q.);$ 3>) -VW& ' <i)0"6 ])0^ X1* <)A")x 41oJ +B*6& 5&)*» 3(1384) &6H 6'& ' @;@J$15 3X&( 36)0;6 <%0^8D6 <q!'yK +"f^\ 3«1381-1346 <#5 . 6);6 &% <%^8D6 $N& .142-115 .cR 324 M&N $0N& ' <i)"6 ])^ +B*6& 5&)*» 3(1388) )\5GJ 3M)H ' ?D 3O) 3$1v 3M%( .38-1 .cR 386 M&N 3«6);6 %^8D6 o8d <jd* &% #~8N6 ' <%^8D6 ])00^ ' <%00^8D6 $00N& X100* +00B*6& 005&)*» 3(1380) ;_B00^ &U( ' $001v 300!;)*6 .45-11 .cR 314 M&N 3+Q5-O ' j"6% +oA 3«6);6 &% 8_" M$J <M%&'()\ <$0q +0W)O 3«<%)*&0, %)0n;'& 0* "0H <q;)05 AP5%^8D6» 3(1386) )8V6' 3}&$"6 .6)qO 3() {%R T6 Mp!"6% a6&!8"6 3&-K#6-N $1Q5 ' D%R ])^ 3<&895 4CnN» 3(1388) 11P;'@D 3XCv$l ' &-K )~R6 3X1Cv 3%'6% <%-Gq* 3Z0q" #05 3<%0^8D6 <q0!'yK +"f^\ 3«(1346-1386) 6);6 <%^8D6 $N& ' <i)"6 . 84-53 .cR 3T-5 M&N <0?bO +0B*6& 05&)*» 3(1386) &-0K f01o9 3X1!\6 ' %6H( )n_8 3oJ$l 3%'6% 3<%-Gq* T-0oJ +P0!'yK 3«1346-83 M&'% . 6);6 &% <%^8D6 $N& * <i)"6 <6+B56' ' ;q" .34-13 .cR 322 M&N 3Z!N #5 36&$"H Mp!"6% 3J8W6 ' "C"6 3«6)0;6 &% <%0^8D6 $0N& ' <i)0"6 ])0^ X1* 41oJ +B*6& 5&)*» 3(1376) X;)C" 3<%GD .6);6 <i)"6 o j; $0N& ' <i)0"6 <0f0v ])0^ X1* +B*6&» 3(1383) XCl }GJ 3Z7J6 ' ?& 3M%6H&A" .80-61 .cR 32 M&N 3<i)"6 %^8D6 aQVB +"f^\ 3«6);6 &% <%^8D6 <jd* 3G/<Y5& -X Adnan Hye, Q. M. and S. Riaz (2008), “Causality between Energy Consumption and Economic Growth: The Case of Pakistan”, The Lahore Journal of Economics, vol. 13 (2 ), pp. 45-58. Apergis, N. and J.E. Payne (2009), “Energy Consumption and Economic Growth: Evidence from the Commonwealth of Independent States”, Energy Economics, vol. 31, pp. 211–216. 44 )A- ?6@5)9 =)> %&'& ()#*+& ()67689 :$);<# 132 Belke, A., C. Dreger and F.D. Haan (2010), “Energy Consumption and Economic Growth –New Insights into the Cointegration Relationship”, Ruhr Economic Papers, pp. 1-22. Cheng, S.B. and T.W. Lai (1997), “An Investigation of Cointegration and Causality between Energy Consumption and Economic Activity in Taiwan Province of China”, Energy Economics, vol. 19, pp. 435– 444. Chontanawat, J., L.C. Hunt and R. Pierse ( 2008), “Does Energy Consumption Cause Economic Growth? Evidence from a Systematic Study of over 100 Countries”, Journal of Policy Modeling, vol. 30, pp. 209–220. Chontanawat, J., L.C. Hunt and R. Pierse (2006), “Causality between Energy Consumption and GDP: Evidence from 30 OECD and 78 Non-OECD Countries”, Surrey Energya Economics Discussion Paper Series 113. Erbaykal, E. (2008), “Disaggregate Energy Consumption and Economic Growth: Evidence From Turkey”, International Research Journal of Finance and Economics, vol. 20, pp. 173-180. Gelo, T. (2009), “Causality between Economic Growth and Energy Consumption in Croatia”, Original Scientific Paper, vol. 27 (2), pp. 327-348. Glasure, Y.U. (2002), “Energy and National Income in Korea: further Evidence on the Role of Omitted Variables”, Energy Economics, vol. 24, pp. 355–365. Hwang, D.B.K. and B. Gum (1992), “The Causal Relationship between Energy and GNP: the Case of Taiwan”, Journal of Energy and Development, vol. 16, pp. 219–226. Kraft, A. and J. Kraft (1978), “On the Relationship between Energy and GNP”, Journal of Energy Development, vol. 3, pp. 401–403. Lise, W. and K.V. Montfort (2007), “Energy Consumption and GDP in Turkey: Is there Aco-Integration Relationship?”, Energy Economics, vol. 29 , pp. 1166–1178. Nachane, D.M. , R.M. Nadkarni and A.V. Karnik (1988), “Cointegration and Causality Testing of the Energy–GDP Relationship: a CrossCountry Study”, Applied Economics, vol. 20, pp. 1511–1531. Nondo, C., M.S. Kahsai and P.V. Schaeffer (2010), “Energy Consumption and Economic Growth: Evidence from COMESA Countries”, RESEARCH PAPER, pp. 1-20. Oh, W. and K. Lee (2004), “Causal Relationship between Energy Consumption and GDP: the Case of Korea 1970–1999”, Energy Economics, vol. 26 (1), pp. 51–59. Rufael, Y.W. (2006), “Electricity Consumption and Economic Growth: A Time Series Experience for 17 African Countries”, Energy Policy, vol. 133 ... %&'& ()#*+& ,- . % /012 3*45 ()6 "#$ 34, pp.1106–1114. Squalli, J. (2007), “Electricity Consumption and Economic Growth: Bounds and Causality Analyses of OPEC Countries”, Energy Economics, vol. 29, pp. 1192–1205. Stern, D.I. (2000), “A Multivariate Cointegration Analysis of the Role of Energy in the US Macroeconomy”, Energy Economics, vol. 22, pp. 267–283. Ter¨asvirta, T. (2004), “Smooth Transition Regression Modelling, in H. L¨utkepohl and M. Kratzig (eds); Applied Time Series Econometrics”, Cambridge University Press, Cambridge, 17. Tsani, Stela Z. (2009), “Energy Consumption and Economic Growth: A Causality Analysis for Greece”, Energy Economics, pp. 1-9. Van Dijk, D., T. Trasvirta and P.H. Franses (2000), “Smooth Transition Autoregressive Models-a Survey of Recent Developments”, Econometric Reviews, vol. 21, pp. 1-47. Yang, H.Y. ( 2000), “A note on the Causal Relationship between Energy and GDP in Taiwan”, Energy Economics, vol. 22, pp. 309–317. Zou, G. and K.W. Chau (2005), “Short and Long Run Effects Between Oil Consumption and Economic Growth in China”, Energy Policy, Article in Press.
© Copyright 2024 ExpyDoc